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Abstract—A rich class of mechanism design problems can
be understood as incomplete-information games between a
principal who commits to a policy and an agent who re-
sponds, with payoffs determined by an unknown state of the
world. Traditionally, these models require strong and often-
impractical assumptions about beliefs (a common prior over
the state). In this paper, we dispense with the common prior.
Instead, we consider a repeated interaction where both the
principal and the agent may learn over time from the state
history. We reformulate mechanism design as a reinforcement
learning problem and develop mechanisms that attain natural
benchmarks without any assumptions on the state-generating
process. Our results make use of novel behavioral assumptions
for the agent – based on counterfactual internal regret – that
capture the spirit of rationality without relying on beliefs.1

I. INTRODUCTION

Mechanism design is a branch of economic theory con-

cerned with the design of social institutions. It encompasses

a wide range of social phenomena, such as auctions, match-

ing markets, taxation, contracts, and persuasion. Despite

this field’s potential, it is often unclear whether and how

mechanisms derived from economic theory can be imple-

mented in practice. In particular, one modeling practice

stands out as a barrier to implementation: the common
prior assumption. Many mechanism design problems are

only interesting in the presence of uncertainty, and this

uncertainty is typically modeled as stochasticity. The state
of the world is drawn according to some distribution and,

importantly, the distribution is commonly known by the

designer and all participants in the mechanism.

This paper will dispense with the common prior assump-

tion. In its place, we consider a model of adversarial online

learning where the principal and a single agent are learning

about the state, over time, using data. The static mecha-

nism design problem is a Stackelberg game of incomplete

information. The principal chooses a policy p, the agent

chooses a response r, nature chooses a state y, and payoffs

are realized. In the online problem, this game is repeated

T times, where state yt is revealed at the end of period

t. The sequence of states is arbitrary and the principal’s

mechanism should perform well without prior knowledge

of the sequence. The principal’s present choices can affect

1For the full version of this paper, see https://arxiv.org/abs/2009.05518.

the agent’s future behavior; this makes mechanism design a

reinforcement learning problem in our model.

In the absence of distributional assumptions, standard

restrictions on the agent’s behavior, like Bayesian rationality,

become toothless. In its place, we define counterfactual
internal regret (CIR) and assume that the agent obtains

low CIR. This is an ex post definition of rationality that

includes Bayesian rationality (with a well-calibrated prior)

as a special case. We develop data-driven mechanisms that

are guaranteed to perform well under our assumptions. That

is, we prove upper bounds on the principal’s regret from

following our mechanism, relative to the single fixed policy

that performs best in hindsight. Our results are reductions

from the principal’s problem to robust versions of static

mechanism design with a common prior.

Running Example: Bayesian persuasion is a model of

strategic communication, due to Kamenica and Gentzkow

(2011). It has received considerable attention from

economists and, more recently, algorithmic game theorists

(e.g. Dughmi and Xu 2016, Cummings et al. 2020). It

is a useful test case for our framework because (a) it is

interesting even with only one agent, (b) the optimal solution

varies with the agent’s beliefs, and (c) researchers have

identified a number of applications.2

Our running example is adapted from Kamenica and

Gentzkow (2011). A drug company (the principal) seeks

approval from a regulator (the agent) for a newly-developed

drug. The state y ∈ {High,Low} describes the drug’s

quality. Neither the regulator nor the company know the

quality in advance. The company needs to design a clinical

trial that will generate (possibly noisy) information about

the drug’s quality. Roughly, a trial p specifies the probability

p(m, y) of sending a message m to the regulator, conditional

on the drug quality y. Informally, the message describes the

outcome of the trial. After hearing the message, the regulator

decides whether to approve the drug. The regulator receives

a payoff if it approves a high-quality drug or rejects a low-

quality drug. The company receives a payoff if the regulator

approves, regardless of quality. Its challenge is to design a

2Bayesian persuasion has been used to study a wide range of topics,
including recommendation systems (Mansour et al. 2016), traffic congestion
(Das et al. 2017), congested social services (Anunrojwong et al. 2020), and
financial stress-testing (Goldstein and Leitner 2018).
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clinical trial that convinces the regulator to approve as many

drugs as possible.

To predict behavior in incomplete-information games, we

need to make assumptions about how the agents deal with

uncertainty. The common prior is one such assumption. In

our running example, the common prior would specify a

probability q ∈ [0, 1] that the drug is high quality. Consider

the case q = 1/3. If the company does not run a trial

– it recommends “approve” in every state – the regulator

would never approve, as the drug is more likely to be low

quality than high quality ex ante. If the company runs the

most thorough trial possible – it recommends “approve’ if

and only if the drug is high quality – the regulator would

approve with probability 1/3. Finally, consider the optimal

trial. The optimal trial always recommends “approve” if the

drug is high quality. If the drug is low quality, it recommends

“approve” and “reject” with equal probability. After hearing

“approve”, the regulator’s posterior puts equal weight on

both states, and so it might as well approve. Here, the

regulator approves with probability 2/3.

Online Mechanism Design: In our model, both the

company and the regulator would be learning about drug

quality over time. New drugs arrive sequentially. For each

drug, the company designs a clinical trial and generates

a message. The regulator hears the message and decides

whether to approve. Regardless of whether the drug is ap-

proved, both parties eventually learn the drug’s true quality,

and the next drug arrives. The company’s strategy, called

a mechanism, maps the drug (i.e. state) history and the

approval decision (i.e. response) history to a trial for the

current drug. The regulator’s strategy, called a learning

algorithm or learner, maps the drug quality history and the

trial (i.e. policy) history to an approval decision for the

current drug. This model is online because the company

and regulator must make decisions while the drugs are still

arriving. It is adversarial in the sense that we impose no

assumptions on the sequence of drugs, and so any results

(e.g. claiming that a mechanism performs well) must hold

for all such sequences.

The company’s problem is to develop a mechanism that

performs as well as the best-in-hindsight trial. That is, the

company should not regret following its mechanism relative

to any alternative where it picks the same trial p in every

period. To evaluate what would have happened under an

alternative sequence of trials, the company must take into

account how the regulator’s behavior would have changed.

So, the company faces a reinforcement learning problem and

its benchmark corresponds to the notion of policy regret in

the literature on bandit learning with adaptive adversaries.

In that setting, Arora, Dekel, et al. (2012) show that guaran-

teeing sublinear (policy) regret is generally impossible. This

precludes a simple solution to the company’s problem; we

must constrain the regulator’s behavior.3

No-Regret Agents: The standard way to constrain the

regulator, or agent’s behavior – i.e. to capture “self-interest”

in the absence of a meaningful notion of ex ante optimality

– is to impose upper bounds on the agent’s regret. We build

on existing no-regret assumptions, but also highlight their

limitations.

Two notions of regret have been used historically: external

and internal (or swap) regret (ER and IR). For example,

Nekipelov et al. (2015) show how ER bounds combined

with bidding data can be used to partially identify bidder

valuations in a dynamic auction. Braverman et al. (2018)

consider a dynamic pricing problem against no-ER agents.4

Their analysis is generalized by Deng et al. (2019), who

study repeated Stackelberg games of complete information.

Furthermore, the literature on no-regret learning in games

has established that if agents satisfy a no-ER (resp. no-IR)

property in a repeated game, the empirical distribution of

their actions will converge to a coarse correlated equilibrium

(resp. correlated equilibrium) (Blum, Hajiaghayi, et al. 2008;

Foster and Vohra 1997; Hart and Mas-Colell 2001; Hartline,

Syrgkanis, et al. 2015).

Both ER and IR can be thought of as “non-policy” regret,

because they do not take into account how the agent’s

behavior affects the behavior of others. The justification

for these regret bounds is that (a) they are satisfied by

well-known learning algorithms, and (b) they generalize

optimality conditions associated with a stationary equilib-

rium. Nonetheless, these regret bounds can be problematic.

Effectively, they assume that agents are (a) sophisticated

enough to obtain low non-policy regret, but (b) not aware

that their true objective is policy regret. Keep in mind that

an agent who minimizes policy regret can easily obtain high

non-policy regret, and thereby violate the regret bounds.

To avoid this problem, the principal can commit to a

mechanism that is nonresponsive to the agent’s behavior: the

policy pt depends on the state history but not on the agent’s

response history. When mechanisms are nonresponsive, non-

policy regret and policy regret coincide for the agent. Then,

bounds on the agent’s regret are permissive assumptions

that allow a wide range of sophisticated and self-interested

behavior, including Bayesian rationality. Keep in mind, there

is no need to resort to responsiveness if nonresponsive

3Similarly, Arora, Dinitz, et al. (2018) consider policy regret in a
repeated game and use the self-interest of the adaptive adversary to motivate
behavioral restrictions. They identify a class of stable no-ER algorithms
such that, if all participants use an algorithm in this class, all participants
obtain low policy regret. Our approach differs in that we do not make
assumptions on the algorithm that the agent uses, other than bounding the
agent’s regret on the realized state sequence.

4In their model, the agent is learning an appropriate response to the
principal’s pricing strategy. If the agents use naive mean-based learners,
Braverman et al. (2018) provide a mechanism that extracts the full surplus.
Our setting differs in that the agent faces uncertainty about a state of the
world, rather than about the mechanism.
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mechanisms tightly bound the principal’s regret.5

Counterfactual Internal Regret: Our no-regret assump-

tion is motivated by the following observation. Even if the

agent satisfies no-ER or no-IR, an early mistake by the

principal can result in a permanent, undesirable shift in the

agent’s behavior. This can occur when the agent behaves as

if she has additional information about the state that is not

explicitly provided by the model. The agent can make the

principal’s problem infeasible if she exploits her information

selectively, i.e. based on the principal’s chosen policies.

Our notion of rationality requires the agent to fully and

consistently exploit her information, regardless of the princi-

pal’s chosen policies. Existing benchmarks like external and

internal regret cannot capture this requirement. To see why, it

helps to consider the fable of the tortoise and the hare. Both

animals have an hour to traverse a one-mile track. For the

tortoise, this requirement is feasible and binding: finishing in

time means hustling, without substantial breaks or detours.

For the hare, however, the requirement is hardly restrictive:

it may stop for a break, walk rather than run, or even

run around in circles while still finishing the race in time.

Benchmarks like external or internal regret imply reasonable

behavior for an uninformed agent (i.e. the tortoise). But for

an informed agent (i.e. the hare), these benchmarks are easy

enough to satisfy that it may engage in all kinds of frivolous

behavior – possibly to the detriment of the principal.

The solution to our analogy is to strengthen the hare’s

benchmark. If the hare has to traverse the track in three

minutes, it needs to hustle, like the tortoise. Similarly, if

the agent has to obtain no-regret with her information as

additional context, this would preclude the kind of frivolous

behavior that makes the principal’s problem infeasible. Of

course, setting this benchmark requires us to know the

nature and quality of the agent’s information, just as we

needed to know the top speed of the hare. The idea behind

counterfactual internal regret is that we can identify the

agent’s information with her past behavior under counterfac-

tual mechanisms. Intuitively, any information that is useful

should eventually reveal itself through variation in behavior.
Main Results: This paper considers three variations

on our model: one where the principal knows the agent’s

information, one where the agent has no private information,

and one where the agent may have private information.

In each case, we propose a mechanism and bound on the

principal’s regret in terms of the agent’s counterfactual

internal regret (CIR).

Our first mechanism is intended as a warmup. It requires

oracle access to the agent’s information and has poor per-

5This approach seems philosophically similar to that of Immorlica et al.
(2020), who develop mechanisms that incentivize efficient social learning.
By restricting attention to simple disclosures (i.e. unbiased subhistories),
they significantly simplify the agents’ inferential problem and can motivate
a permissive notion of frequentist rationality. Having restricted disclosure
in this manner, they nonetheless design mechanisms with optimal rates of
convergence.

formance in finite samples, but avoids some complications

associated with information asymmetry between the princi-

pal and agent. First, the mechanism produces a calibrated

forecast of the state in the current period using off-the-shelf

algorithms, using the oracle as additional context for the

forecast. The forecast miscalibration error is

FT = Õ
(
T−1/4δ1−nYnYn2nP

R
)

Then, it chooses the worst-case optimal policy in a (hypo-

thetical) ε-robust version of the common prior game. In that

game, the agent’s response only needs to be ε-approximately

optimal, and the mechanism substitutes its forecast for the

prior.

Theorem 1 bounds the principal’s regret under this mech-

anism, under some restrictions on the stage game. Suppose

there are nY states, nP policies, and nR responses. Fix

a parameter ε > 0 (controlling robustness) and δ > 0
(controlling the fineness of a grid). Our bound is

O(ε) +
1

ε
O(CIR) +O(FT ) +O(δ1/2)

If the agent satisfies no-CIR, i.e. CIR→ 0 as T →∞, then

the principal’s regret vanishes in T as long as ε, δ → 0 at the

appropriate rates. Moreover, the principal’s average payoffs

converge to a natural benchmark: what he would have

obtained in a stationary equilibrium of the repeated game

with a common prior (the empirical distribution conditioned

on agent’s information).

Our second mechanism applies when the agent is as

uninformed as the principal. It is identical to the first, except

its forecast does not use information revealed by the learner,

and so the forecast miscalibration error is

GT = Õ
(
T−1/4δ1−nYnY

)

We formalize “uninformedness” by assuming that the agent’s

external regret is non-negative (in conjunction with no-

CIR). Theorem 2 bounds the principal’s regret under this

mechanism, under some additional restrictions on the stage

game. Our bound is

O(ε) +
1

ε
O(CIR) +O(GT ) +O(δ1/2)

Our third mechanism applies even when the agent is

more informed than the principal. Here, we consider an

“informationally robust” version of the stage game, due to

Bergemann and Morris (2013), where the agent receives a

private signal from an unknown information structure. Like

before, we formulate an ε-robust version of this game, where

the agent’s response need only be ε-approximately optimal.

Our mechanism is identical to the second mechanism, except

that it chooses the worst-case optimal policy in the ε-
informationally-robust game instead of the ε-robust game.

Theorem 3 bounds the principal’s regret under this mech-

anism, under some restrictions on the stage game. Let π̂T
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denote the empirical distribution of states y1:T . Given a

common prior π, let ∇(π) be the difference between the

principal’s maxmin payoff and his maxmax payoff across

all possible information structures. Roughly, our bound is

∇(π̂T ) +O(ε) +
1

ε
O(CIR) +O(GT ) +O(δ1/2)

Here, the principal’s regret does not vanish as T → ∞.

However, it is vanishing up to the cost of informational

robustness ∇(π̂T ).
Finally, although our focus is not on computational

complexity, note that the computational tractability of our

mechanisms will depend critically on our ability to solve

robust mechanism design problems under a common prior.

So, while our bounds on the principal’s regret apply to a

large class of games, evaluating tractability may require a

case-by-case analysis.

Additional Related Work: Within computer science,

many researchers share our goal of replacing prior knowl-

edge in mechanism design with data. For example, a number

of papers have applied online learning to auction design

(e.g. Blum and Hartline 2005; Blum, Kumar, et al. 2004;

Daskalakis and Syrgkanis 2016; Dudı́k et al. 2017; Kleinberg

and Leighton 2003) and Stackelberg security games (e.g.

Balcan, Blum, Haghtalab, et al. 2015). Here, agents are

either short-lived or myopic, whereas our agent is long-lived

and forward-looking. In addition, the literature on sample

complexity in mechanism design allows the principal to

learn the state distribution from i.i.d. samples (e.g. Balcan,

Blum, Hartline, et al. 2008; Cole and Roughgarden 2014;

Morgenstern and Roughgarden 2015; Syrgkanis 2017). Here,

the data arrives as a batch rather than online, there is no

repeated interaction and the question of responsiveness does

not arise.

These papers can avoid the agent’s learning problem

because they emphasize applications where the agent does

not face uncertainty, or where truthfulness is a dominant

strategy. In contrast, Cummings et al. (2020) and Immorlica

et al. (2020) study problems that are closer to our own,

insofar as both the principal and the agent must learn from

data. They impose behavioral assumptions that are suited

for i.i.d. data, whereas our behavioral assumptions apply to

arbitrary data-generating processes.

Within economics, research has focused on relaxing prior

knowledge, rather than replacing it entirely. Part of the liter-

ature on robust mechanism design relaxes the common prior

to some kind of approximate agreement on the distribution

(e.g. Artemov et al. 2013; Jehiel et al. 2012; Meyer-ter-

Vehn and Morris 2011; Ollár and Penta 2017; Oury and

Tercieux 2012). Our approach will suggest ε-robustness and

ε-informational-robustness as alternatives to “approximate

agreement”.

Organization: Section II introduces the stage game

and ε-robustness. Section III introduces the repeated game.

Section IV defines counterfactual internal regret. Section

V presents our results when the principal is informed.

Section VI introduces the stage game with private signals.

Section VII presents our results for an uninformed agent.

Section VIII presents our results when the agent may be

more informed than the principal. Section IX concludes.

In addition, the full version of this paper includes more

details and proofs, including examples and a discussion on

the complexity of the agent’s no-CIR learning problem.

II. STAGE GAME

Our model features three participants: a male principal, a

female agent, and nature. As advertised, we are interested in

a repeated interaction between these participants. To begin

with, however, we describe the stage game, which will

constitute a single-round of the repeated game. In the stage

game, the principal moves first and commits to a policy

p ∈ P . Next, the agent observes the policy p and then

chooses a response r ∈ R. Utility functions depend on

the response r, the policy p, and an unknown state of the

world y ∈ Y , chosen by nature. Formally, the agent’s utility

function is U : R × P × Y → [0, 1] while the principal’s

utility function is V : R×P × Y → [0, 1].
The state space Y is finite, with nY elements. In this

paper, we will also treat P and R as finite, with nP and nR
elements respectively. This is done for ease of exposition

but not required for our results.

The stage game plays an important role in our analysis.

Two of our results (theorems 1 and 2) are best understood

as reducing the online mechanism design problem to the

simpler task of finding a “locally-robust” policy in the

stage game. In the locally-robust problem, we maintain the

traditional common prior assumption: that is, the state y is

drawn from a commonly known distribution π. However, we

relax the assumption that the agent maximizes her expected

utility Ey∼π[U(r, p, y)]. Instead, she chooses a response

that guarantees her an expected utility within an additive

constant ε of the optimum. Let B(π, ε) be the set of response

distributions μ consistent with this assumption, i.e. where

ε ≥ max
r̃∈R

Ey∼π[U(r̃, p, y)]− Ey∼π[Er∼μ[U(r, p, y)]]

Since this assumption only partially identifies the agent’s

behavior, the principal’s utility can take on a range of values.

The principal’s worst-case utility from following policy p is

described by the function

αp(π, ε) = min
μ∈B(π,ε)

Ey∼π[Er∼μ[V (r, p, y)]]

and his best-case utility is described by

βp(π, ε) = max
μ∈B(π,ε)

Ey∼π[Er∼μ[V (r, p, y)]]

Definition 1 (ε-Robustness). The ε-robust policy is worst-
case optimal over all response distributions μ that achieve at
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least the agent’s optimal expected utility minus ε. Formally,
it is

p∗(π, ε) ∈ argmax
p∈P

αp(π, ε)

Definition 2 (Cost of ε-Robustness). Fix a distribution π
and parameter ε > 0. The cost of ε-robustness is the distance
between the principal’s best-case utility (under the best-case
optimal policy) and worst-case utility (under the worst-case
optimal policy). Formally,

Δ(π, ε) = max
p∈P

βp(π, ε)− αp∗(π,ε)(π, ε)

The cost of ε-robustness will be a key variable in our

upper bounds on the principal’s regret in the repeated game.

It will be convenient (but not necessary) to assume that this

cost is growing at most linearly in ε.

Assumption 1. ∀π ∈ Δ(Y), Δ(π, ε) = O(ε).

Finally, the following lemma will be important to our

results. Suppose that the principal misjudges the agent.

Instead of choosing a response that achieves at least her

optimal expected utility minus ε, the agent only achieves her

optimal expected utility minus ε+ ε̃, for ε̃ > 0. Nonetheless,

if the principal uses the ε-robust policy, his utility degrades

smoothly in the residual ε̃.

Lemma 1. Fix distribution π ∈ Δ(Y), policy p ∈ P , and
constants ε, ε̃ > 0. The principal’s worst-case utility satisfies

αp(π, ε+ ε̃) ≥ αp(π, ε)− ε̃

ε

and his best-case utility satsifies

βp(π, ε+ ε̃) ≤ βp(π, ε) +
ε̃

ε

In the full version, we consider two special cases of our

model: Bayesian persuasion and contract design. For each

case, we provide a simple example in which we verify our

assumptions and evaluate our results.

III. REPEATED GAME

In the repeated game, the stage game is repeated T times.

In period t, the principal chooses policy pt, the agent chooses

response rt, and nature chooses the state yt. At the end of

period t, the state yt is revealed to both the principal and

the agent. The agent’s repeated game strategy (henceforth,

learner L) maps the state history y1:t−1, the response history

r1:t−1, the policy history p1:t−1, and the current policy pt
to a distribution μt over responses. Formally, the response

distribution is given by

Lt : Yt−1 ×Rt−1 × Pt → Δ(R)

The principal’s repeated game strategy (henceforth, mecha-
nism σ) maps the state history y1:t−1, the response history

r1:t−1, and the policy history p1:t−1 to a distribution νt over

policies. Formally, the policy distribution is given by

σt : Yt−1 ×Rt−1 × Pt−1 → Δ(P)
Our goal is to design a mechanism σ∗ that the principal

would not regret using, relative to a finite set of alterna-

tive mechanisms. Regret – which we define momentarily

– measures the gap in performance between σ∗ and the

alternative mechanism σ that performed best in hindsight,

given the realized sequence of states y1:T . We consider a

simple set of alternative mechanisms, corresponding to the

constant mechanisms σp that select the same policy

σp
t (y1:t−1, r1:t−1, p1:t−1) = p

in all periods t and for all histories.

To define the principal’s regret, we need notation for the

agent’s behavior under both the mechanism σ∗ and any

constant mechanism σp. Fix the state sequence y1:T . Let

μ∗t describe the agent’s behavior under σ∗, i.e.

μ∗t = Lt

(
y1:t−1, r

∗
1:t−1, p

∗
1:t

)

given the realized history of responses r∗1:t−1 and policies

p∗1:t under σ∗. Similarly, let μp
t describe the agent’s behavior

under σp.

Definition 3 (Principal’s Regret). The principal’s regret

PR(L, y1:T ) relative to the best-in-hindsight σp is

max
p∈P0

1

T

T∑
t=1

(
Er∼μp

t
[V (r, p, yt)]− Er∼μ∗

t
[V (r, p∗t , yt)]

)

The mechanism σ∗ satisfies no-regret if the principal’s

regret is o(1), i.e. it vanishes as T → ∞. Recall that the

no-regret mechanism design problem is infeasible without

further assumptions on the learner L.

IV. BEHAVIORAL ASSUMPTIONS

In this section, we develop a restriction on the learner L
that captures “rational” behavior by the agent, without re-

quiring assumptions on the state sequence y1:T . In particular,

we build on no-regret assumptions pioneered in the literature

on learning in games.

In online learning, regret measures how much better or

worse off the agent would have been had she followed the

best-in-hindsight “simple” strategy instead of her learner.

Different notions of regret correspond to different definitions

of simplicity. All of the regret notions used in this paper will

be special cases of contextual regret, defined as follows.

Given a sequence z1:T of variables in some arbitrary set

Z , contextual regret considers a strategy “simple” if, for

any two periods t and τ , sharing the same context zt = zτ
implies taking the same response rt 	= rτ .
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Definition 4. Given sequence z1:T of covariates, the agent’s
contextual regret CR(p1:T , y1:T ) relative to the best-in-
hindsight modification rule h : Z → R is

max
h

1

T

T∑
t=1

(U(h(zt), pt, yt)− U(rt, pt, yt))

Note that, unlike our definition of the principal’s regret,

the agent’s contextual regret does not take into account how

changes in her past behavior would have also affected the

principal’s behavior. This omission is justified when the

mechanism is nonresponsive.

Definition 5. The mechanism σ is nonresponsive if

σt(y1:t−1, r1:t−1, p1:t−1) = σt(y1:t−1, r̃1:t−1, p1:t−1)

for any state history y1:t−1, policy history p1:t−1, and
response histories r1:t−1, r̃1:t−1.

Our mechanisms will be nonresponsive. This is a design

choice, not an assumption. As discussed in the introduction,

restricting attention to nonresponsive mechanisms simplifies

the agent’s problem and makes our behavioral assumptions

more credible. As it turns out, there exist nonresponsive no-

regret mechanisms in two of the scenarios we study, so there

is no need for responsive mechanisms in these settings.

In the rest of this section, we define three special cases of

contextual regret: external regret (ER), internal regret (IR),

and counterfactual internal regret (CIR).

A. External Regret

In our model, external regret is contextual regret where

the policy pt is the context in period t.6

Definition 6. The external regret ER(p1:T , y1:T ) relative to
the best-in-hindsight modification rule h : P → R is

max
h

1

T

T∑
t=1

(U(h(pt), pt, yt)− U(rt, pt, yt))

Although common in the literature, no-ER assumptions

are insufficient for our problem. They do not circumvent the

infeasibility of no-regret mechanism design that motivated us

to restrict the agent’s behavior in the first place. In particular,

this is because they fail to rule out certain pathological

behaviors. Because these pathological behaviors are clearly

not in the agent’s best interest, we also conclude that no-ER

fails to rule out “irrational” behavior and is therefore not a

good definition of “rationality”. The following proposition

(and its proof) clarifies the issue.

6In other words, we compare the agent’s performance to her best-in-
hindsight strategy in the stage game (which is technically a function P →
R). If we instead compared the agent’s performance to the best-in-hindsight
response r ∈ R, this would confound variation in policies with variation
in the state. Our approach is similar to that of Hartline, Johnsen, et al.
(2019), where agents best respond to an allocation rule given the empirical
value distribution, rather than naively best respond to the empirical bid
distribution.

Proposition 1. In our running example, for every mecha-
nism σ∗, there exists a learner L that guarantees no-ER
on all histories and a state sequence y1:∞ such that the
principal’s regret does not vanish.

B. Counterfactual Internal Regret

Before defining CIR, we provide a brief intuition: what

went wrong with external regret? Recall the tortoise and hare

analogy in the introduction. For a behavioral assumption to

rule out pathological behaviors, it may have to adapt to the

information of the agent (or the speed of the animal).

What do we mean by information? Implicit in most

stochastic models is the idea that the state is fundamentally

unpredictable. But there is no ex ante sense in which

the deterministic sequence y1:T is predictable or not. In

particular, the agent may behave as if she possesses “private

information” about the sequence of states that goes beyond

the “public information” inherent in the description of the

model. In practice, the agent may have access to data that

the principal lacks, notice a pattern that did not occur to

the principal, or succeed through dumb luck. Formally, this

reflects an adversary who simultaneously chooses the state

sequence y1:T and the learner L to cause our mechanism to

underperform. In particular, even though the agent cannot

observe yt when choosing response rt, this does not prevent

the adversary from “correlating” rt and yt.
No-CIR requires the agent to consistently and fully exploit

her private information. In the spirit of revealed preference,

private information is identified with her behavior across

counterfactual mechanisms. Intuitively, if the agent is able

to distinguish between periods t, τ and finds it useful to do

so, then her behavior should also differ between those two

periods. If her behavior under one mechanism reveals private

information, this information should also be accessible to her

under a different mechanism. This logic allows us to define

a purely ex post notion of rationality that does not refer to

beliefs or distributions over state sequences.

No-CIR refines no-IR, a weaker condition that was devel-

oped in the literature on calibration (e.g. Foster and Vohra

1997). Internal regret is contextual regret where the context

is the agent’s own behavior r1:T .

Definition 7. The agent’s internal regret IR(p1:T , y1:T )
relative to the best-in-hindsight modification rule h : P ×
R → R is

max
h

1

T

T∑
t=1

(U(h(pt, rt), pt, yt)− U(rt, pt, yt))

Counterfactual internal regret is contextual regret where

the context is the concatenation of: the policy p∗t under the

proposed mechanism σ∗; the agent’s behavior r∗1:T under

σ∗; and her counterfactual behavior rp1:T under the constant

mechanisms σp.
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Definition 8. Let the information partition be

I = P ×R× (R)
nP

and let the information It in period t be

It = (p∗t , r
∗
t , (r

p
t )p∈P)

Crucially, the same information It is available to the agent

regardless of whether the principal follows our mechanism

σ∗ or deviates to a constant mechanism σp. Intuitively,

the principal’s choice of mechanism should not affect what

information the agent has available.

Definition 9. The agent’s counterfactual internal regret

CIR(p1:T , y1:T ) relative to the best-in-hindsight modifica-
tion rule h : I → R is

max
h

1

T

T∑
t=1

(U(h(It), pt, yt)− U(rt, pt, yt))

The discussion in the proof of proposition 1 clarifies

how no-CIR rules out the kinds of pathological or irrational

behavior that no-ER fails to rule out.

V. MECHANISM FOR A KNOWN LEARNER

Our first result should be viewed as pedagogical. It bounds

the principal’s regret under a mechanism that requires oracle

access to the agent’s learner. This requirement is unrealistic

and will be removed in sections V and VI. Likewise, the

bound itself will feature an exponential dependence on the

size of the policy space. This dependence will also be

removed in later sections.

Definition 10. The information oracle Ωt : P → I specifies
the information It that the learner L would generate in
period t given any policy pt ∈ P .

This case is a convenient starting point because it avoids

the bulk of the information asymmetries between the princi-

pal and the agent that our later results need to address. That

follows from the fact that any private information generated

by the learner can be anticipated by the principal with access

to the information oracle. This case is also a convenient point

of departure from the common prior assumption because it

permits a wider range of agent behavior without relaxing the

principal’s knowledge of said behavior.7

Definition 11. The forecasting algorithm FORECAST ap-
plies a generic no-internal-regret algorithm due to Blum and
Mansour (2007) in an auxilliary learning problem where the
action space consists of discretized forecasts π ∈ CΔ(Y) and
the loss function is the negated quadratic scoring rule S. In

7Under a common prior, the principal knows the agent’s prior and
therefore has precise knowledge of the agent’s learner. In addition, since
the agent is Bayesian, the agent does not find it beneficial to randomize and
her learner will typically be deterministic. Essentially, the common prior
provides an information oracle for free.

each period, the algorithm makes a prediction πt and incurs
loss −S(πt, yt).

Mechanism 1. Let the distribution πt be a forecast of the
state yt given by the FORECAST algorithm, using the agent’s
information as additional context. Formally, the context is
the vector of outputs Ω(p) of the information oracle under
policies p ∈ P . Now, fix a parameter ε̄ > 0. In period t,
the informed-principal mechanism σ∗ chooses the ε̄-robust
policy p∗(πt, ε̄) that treats the forecast πt as a common prior.

Before stating the theorem in full, we present the reason-

ing behind the result and clarify the components of the regret

bound, as well as the assumptions required. Let “t ∈ I”

indicate that It = I . Let nI =
∑T

t=1 1(t ∈ I) be the number

of periods with information I . Let π̂I be the empirical

distribution conditioned on information I , i.e.

π̂I(y) =
1

nI

∑
t∈I

1(yt = y)

We begin with a straightforward but important observation:

across all periods t ∈ I , the responses r∗t = r∗I and policies

p∗t = p∗I are constant, as are her counterfactual responses

rpt = rpI under the constant mechanisms σp. As a result,

the principal’s average utility across context I takes on a

familiar form:

1

nI

∑
t∈I

V (rI , pI , yt) = Ey∼π̂I
[V (rI , pI , y)]

Similarly, the agent’s average utility is

1

nI

∑
t∈I

U(rI , pI , yt) = Ey∼π̂I
[U(rI , pI , y)]

Within each context I , we have recreated the stage game

with common prior π̂I . The agent accumulates regret

εI = max
r̃

Ey∼π̂I
[U(r̃, p, y)]− Ey∼π̂I

[U(rI , p, y)]

Under mechanism 1, the principal chooses the ε̄-robust

policy for the forecast πt. Suppose for the moment that the

forecast is constant across all periods t ∈ I , i.e. πt = πI .

Since the forecast is well-calibrated by design and uses

information It as context, πI cannot be too far in the l1
distance from π̂I . Therefore, the ε̄-robust policy for πI is

nearly ε̄-robust for π̂I .

At this point, the principal has (roughly) applied the

ε̄-robust policy for the empirical distribution π̂I , to an

agent that obtains regret εI . In that sense, the principal has

misjudged the agent’s capacity to make mistakes. However,

recall lemma 1: this affects the principal’s best-case and

worst-case utilities by at most εI/ε̄. It follows that, roughly-

speaking, the principal’s utility is not much worse than the

worst-case optimal utility, i.e.

Ey∼π̂I
[V (rI , pI , y)] ≥ max

p̃
αp̃(π̂I , ε̄)− εI

ε̄

265



At the same time, it cannot be much better than the best-case

optimal utility. More precisely,

Ey∼π̂I
[V (rI , pI , y)] ≤ max

p̃
βp̃(π̂I , ε̄) +

εI
ε̄

(1)

By assumption 1, the difference between the upper bound

and the lower bound is O(ε̄)+O (εI/ε̄). This pins down the

principal’s utility under mechanism 1. Moreover, the upper

bound (1) also applies to the principal’s payoffs under any

constant mechanism σp. So, the regret accumulated by the

principal in context I is also at most

O(ε̄) +O (εI/ε̄)

This brings us to our key assumption: the agent’s CIR is

at most some constant ε. Note that we do not require CIR

to be bounded on all state sequences, only the realized y1:T .

For instance, a Bayesian agent will obtain low CIR as long

as her beliefs are well-calibrated.

Assumption 2 (Bounded CIR). Let y1:T be the real-
ized state sequence and let p∗1:T be the policy sequence
generated by the proposed mechanism σ∗. There exists
a constant ε ≥ 0 such that ε ≥ CIR(y1:T , p

∗
1:T ) and

ε ≥ CIR(y1:T , (p, . . . , p)), ∀p ∈ P .

Since CIR is contextual regret with information It as

context, bounded CIR ensures that ε ≥ 1
T

∑
I∈I nIεI .

Combine this with our bound on the agent’s regret εI in the

context of information I , and it follows that the principal’s

regret is at most

O(ε̄) +O (ε/ε̄)

To transform this intuition into a result, we need to address

an assumption made along the way: that the forecast πt is

constant across all periods t ∈ I . This is not necessarily

true. The adversary can choose a sequence of states y1:T that

makes the principal appear more informed than the agent.

Indeed, variation in forecasts can be interpreted as private

information of the principal, even if it is spurious. On the

other hand, any variation in πt that affects the policy pt will

also be included in the agent’s information It. What remains

is variation in πt that does not affect the policy – information

that is useless to the principal, but not necessarily useless

to the agent. If the principal expects the agent to exploit

this information and the agent does not, this can lead to a

suboptimal policy choice.

The following assumption restricts attention to stage

games where this problem does not arise; that is, the agent’s

failure to exploit information that is useless to the principal

does not affect the principal’s utility. Alternatively, we can

avoid this restriction by allowing the agent to use the

principal’s forecast πt as additional context.

Assumption 3. Let ε > 0. Let π and π̃ be distributions in
the stage game. If the ε-robust policies under π and under π̃
are the same, then they are also equal to the ε-robust policy

under any convex combination π̆ = λπ + (1− λ)π̃ of these
distributions. That is,

p∗(π, ε) = p∗(π̃, ε) =⇒ p∗(π, ε) = p∗(π̆, ε)

Theorem 1. Assume restrictions on the stage game (assump-
tions 1, 3), and ε-bounded CIR (assumption 2). Let σ∗ be
the mechanism 1. Given access to the information oracle,
for any constants ε̄, δ > 0, the principal’s expected regret
Eσ∗ [PR(L, y1:T )] is at most

O(ε̄) +
1

ε̄
· Õ

(
ε+ T−1/4δ1−nYnYn2nP

R + δ1/2
)

Theorem 1 implies that the principal’s regret vanishes if

T → ∞ and ε, ε̄, δ → 0 at the appropriate rates. It also

follows from the proof that the principal’s payoffs converge

to a natural benchmark: what he would have obtained in

a stationary equilibrium of the repeated game where it is

common knowledge that yt is drawn independently from

the empirical distribution π̂It .

VI. STAGE GAME WITH PRIVATE SIGNALS

In general, we cannot expect the principal to have access

to an information oracle. Fortunately, we can still construct

mechanisms σ∗ that obtain vanishing or bounded principal’s

regret without any knowledge of the learner. However, in

order to state the relevant assumptions (sections VII and

VIII) and describe the mechanism (section VIII), we need

to consider scenarios where the agent has private information

that the principal lacks. This requires a brief detour. In this

section, we revisit the stage game in order to introduce

terminology that reflects agent’s private information.
Suppose that the state y is drawn from a known distribu-

tion π, but the agent has access to a private signal I ∈ I
generated by information structure γ.

Definition 12 (Information Structure). An information struc-

ture is a function γ : I × Y → [0, 1] where γ(·, y) is a
probability distribution over I.

The game proceeds as follows. First, nature chooses a

hidden state y ∼ π. Second, the principal chooses a policy

p. Third, the agent observes a signal I ∼ γ(·, y) and chooses

a response rI . Finally, the state y is revealed and payoffs are

determined.
As in section II, suppose the agent does not neces-

sarily maximize her expected utility. Instead, she chooses

responses rI that guarantees her an expected utility that is

within an additive constant ε of the optimum. Let B(π, γ, ε)
be the set of response distributions μI consistent with this

assumption, i.e. where

ε ≥ max
r̃I∈R

Ey∼π

[
EI∼γ(·,y)[U(r̃I , p, y)− Er∼μI

[U(r, p, y)]]
]

For a given information structure γ, the principal’s worst-

case utility αp(π, γ, ε) under policy p is

min
μI∈B(π,γ,ε)

Ey∼π

[
EI∼γ(·,y)[Er∼μI

[V (r, p, y)]]
]
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and his best-case utility βp(π, γ, ε) is given by

max
μI∈B(π,γ,ε)

Ey∼π

[
EI∼γ(·,y)[Er∼μI

[V (r, p, y)]]
]

Recall that our theorem 1 could be interpreted as reducing

the online mechanism design problem to the simpler task of

finding a ε-robust policy in the stage game without a private

signal. The same is true of our next result, theorem 2. In

contrast, theorem 3 reduces the online problem to solving for

a robust policy when the agent has a private signal generated

by an unknown information structure. This corresponds to

notion of informational robustness introduced by Bergemann

and Morris (2013) and applied by Bergemann, Brooks, et al.

(2017), applied to our single-agent setting.

Definition 13. The ε-informationally-robust policy for an
unknown information structure γ is

p†(π, ε) ∈ argmax
p∈P

inf
γ

αp(π, γ, ε)

Definition 14. Fix π ∈ Δ(Y) and ε > 0. The cost of ε-
informational-robustness the principal’s best-case optimal
minus his worst-case optimal utility. Formally,

∇(π, ε) = max
p∈P

sup
γ

βp(π, γ, ε)−max
p∈P

inf
γ

αp(π, γ, ε)

Let ∇(π) = ∇(π, 0) denote the cost of informational

robustness in the traditional setting where the agent is

optimizing exactly (ε = 0). It will be convenient to assume

that the cost is growing at most linearly in ε.

Assumption 4. ∀π ∈ Δ(Y), ∇(π, ε) = ∇(π) +O(ε).

VII. MECHANISM FOR AN UNINFORMED AGENT

Our second result bounds the principal’s regret under a

mechanism that does not require detailed knowledge of the

learner L. Instead, this result assumes that the agent is not

more informed than the principal.

Mechanism 2. Let the distribution πt be a forecast of the
state yt given by the FORECAST algorithm. Fix a parameter
ε̄ > 0. In period t, the uninformed-agent mechanism σ∗

chooses ε̄-robust policy p∗(πt, ε̄) that treats forecast πt as a
common prior.

What does it mean for an agent to be uninformed? The

agent’s behavior cannot reveal an understanding of the state

sequence that goes far beyond the principal’s forecast. This

can be formalized by bounding the agent’s ER from below

and her IR (or CIR) from above.

Assumption 5 (Lower-Bounded ER). Let y1:T be the re-
alized state sequence and let p∗1:T be the policy sequence
generated by the proposed mechanism σ∗. There exists
a constant ε̃ ≥ 0 such that ER(y1:T , p

∗
1:T ) ≥ −ε̃ and

ER(y1:T , (p, . . . , p)) ≥ −ε̃, ∀p ∈ P .

We claimed that there is no ex ante sense in which the

deterministic sequence y1:T is predictable or not. However,

this combination of bounds can be seen as an ex post

definition of unpredictability. If an agent fully exploits

the information she reveals under mechanism σ∗ (no-IR)

without outperforming the best use of public information

(non-negative ER), her private information cannot be that

useful. Fully exploiting useless information generally means

ignoring it.

To see this, suppose the policy p is fixed and that the

agent obtains non-positive IR and non-negative ER. It is

trivial to show that IR is non-negative and bounded below

by ER, so it follows that the agent’s IR and ER both equal

zero. In turn, IR and ER can only be equal when the best-

in-hindsight responses conditional on the context (i.e. the

agent’s response) are the same in every context. That is, the

context is useless. To achieve zero IR, the agent’s response

must equal some best-in-hindsight response conditional on

the context. If the best-in-hindsight response is unique, this

means that the agent’s response is the same in every period.

What this amounts to, essentially, is that our reasoning for

theorem 1 largely applies to theorem 2. Let us recall the first

steps of that argument. Previously, we considered all periods

t ∈ I with information I as context. It followed immediately

from the definition of information that the agent’s responses

rt were roughly some constant rI . Furthermore, since the

principal’s forecasts used It as context, the constant policy

pI was calibrated to the empirical distribution π̂I .

Now, our mechanism does not have access to It and is

not calibrated to π̂I . Instead, it is calibrated to the empirical

distribution π̂pt conditioned on policy pt, i.e.

π̂P (y) =
1

np

T∑
t=1

1(yt = y, pt = p)

where np is the number of periods where pt = p. The policy

context p is coarser than information I , by definition of the

latter. So, the principal following mechanism 2 behaves as

if the agent shares his prior π̂p, while the agent behaves as

if she receives I as a private signal.

This is where non-negative ER comes in. The agent’s

information I is useless to her. Suppose for now that there

is a unique best response given policy p and distribution

π̂p. Then the agent will choose the same response rt = rp
in every period where pt = p. In other words, the policy

context p coincides with the agent’s information I , and the

principal is correct in assuming that the agent optimizes

against the empirical distribution π̂p. Our previous argument

goes through.

What if our supposition fails, i.e. there are multiiple best

responses given policy p and distribution π̂p? In general,

the argument breaks down. The agent can condition her

action on her private information I , which no longer nec-

essarily coincides with the policy context p. To be clear,

this private signal I remains useless to the agent. Moreover,

the ε̄-robust policy is by definition robust to multiplicity of
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best responses. However, because the agent’s best response

may be correlated with the state, this can undermine the

principal’s utility even if it does not affect the agent’s.

The following assumption restricts attention to stage

games where this issue does not arise. Informally, it asserts

that if a private signal is useless to the agent, then it has

limited relevance to the principal, assuming that the principal

is following (nearly) optimal policies. Formally, the agent’s

value φp(π, γ) from information structure γ in the stage

game with common prior π is

max
r,rI∈R

Ey∼π

[
EI∼γ(·,y)[U(rI , p, y)]− U(r, p, y)

]

This is the expected utility of the agent that optimizes given

information structure γ minus the expected utility of the

agent if she does not receive a private signal.

Assumption 6. Let π be a distribution, ε > 0 be a constant,
and γ be an information structure (intuitively, one that is not
useful to the agent).

1) If the principal uses ε-robust policy p∗(π, ε), his
maxmin payoff without γ is not much larger than his
maxmin payoff with γ. That is,

αp∗(π,ε)(π, ε)− αp∗(π,ε)(π, γ, ε) = O
(
φp∗(π,ε)(π, γ)

)

+O(ε)

2) The principal’s maxmax payoff with γ under any
policy p ∈ P is not much larger than his maxmax-
optimal payoff without γ. That is,

βp(π, γ, ε)−max
p̃∈P

βp̃(π, ε) = O (φp(π, γ)) +O(ε)

Theorem 2. Assume restrictions on the stage game (assump-
tions 1, 3, 6), ε-bounded CIR (assumption 2), and ε̃-lower-
bounded ER (assumption 5). Let σ∗ be the uninformed-agent
mechanism 2. For any constant ε̄ > 0, the principal’s regret
Eσ∗ [PR(L, y1:T )] is at most

O(ε̄) +
1

ε̄
· Õ

(
ε+ T−1/4δ1−nYnY + δ1/2

)

Theorem 2 implies that the principal’s regret vanishes if

T → ∞ and ε, ε̄, ε̃, δ → 0 at the appropriate rates. It also

follows from the proof that the principal’s payoffs converge

to a natural benchmark: what he would have obtained in

a stationary equilibrium of the repeated game where it is

common knowledge that yt is drawn independently from

the empirical distribution π̂pt
.

VIII. MECHANISM FOR AN INFORMED AGENT

In section IV, we assumed that the principal knows the

agent’s learner L. The implication of this assumption is that

the principal is as informed as the agent. In section V, we

assumed that the agent is as uninformed as the principal.

In this section, we allow the agent to be more informed

than the principal. This generality comes at a cost: we no

longer ensure vanishing principal’s regret. Instead, we show

that, in the limit, the following mechanism guarantees regret

that is no greater than the empirical cost of informational

robustness.

Mechanism 3. Let the distribution πt be a forecast of the
state yt given by the FORECAST algorithm. Fix a parameter
ε̄ > 0. In period t, the informed-agent mechanism σ∗

chooses the ε̄-informationally-robust policy p†(πt, ε̄) that
treats the forecast πt as a common prior.

Theorem 3 builds on the same reasoning as theorems 1

and 2. First, we need to adapt assumption 3.

Assumption 7. Fix π, π̃ ∈ Δ(Y) and ε > 0. If the ε-
informationally-robust policies under π and under π̃ are
the same, then they are also equal to the ε-informationally-
robust policy under any convex combination any convex
combination π̆ = λπ + (1− λ)π̃. That is,

p†(π, ε) = p†(π̃, ε) =⇒ p†(π, ε) = p†(π̆, ε)

Second, recall how, in the previous section, we were

concerned that the principal’s policy pt in period t was cal-

ibrated to the empirical distribution π̂p given policy context

p, rather than the empirical distribution π̂I given information

I = It. There, we resolved that problem by assuming the

agent was uninformed (non-negative ER). Here, our solution

is even simpler: choose a policy pt that is robust to the

agent’s private information I , whatever that may be.

To be more precise, recall that the policy context p is

coarser than information I . We can interpret periods t ∈ I
as those periods in which the agent received a private signal

I . By looking at the frequency of information I within policy

context p, we can define an empirical information structure

γ̂p using Bayes’ rule, i.e.

γ̂p(I, y) =
nI π̂I(y)

npπ̂p(y)

for all information I ∈ I that is consistent with policy p.

Before, we could approximately treat the principal’s and

agent’s utility as their expected utility in the stage game

where the state y was drawn from the empirical distribution

π̂I . Now, the approximation is the expected utility in the

stage game where y ∼ π̂P and the agent receives private

signal I from the empirical information structure γ̂P . Of

course, the principal’s policy pt is robust to all information

structures γ, including γ̂P .

Theorem 3. Assume restrictions on the stage game (assump-
tions 4, 7), and ε-bounded CIR (assumption 2). Let σ∗ be
the informed-agent mechanism 3. For any constant ε̄ > 0,
the principal’s regret is at most

Eσ∗ [PR(L, y1:T )] ≤ 1

T

∑
p∈P

np∇(π̂p) +O(ε̄)

+
1

ε̄
· Õ

(
ε+ T−1/4δ1−nYnY + δ1/2

)
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In contrast to our previous results, this regret bound

does not vanish. However, the bound does converge to the

empirical cost of informational robustness as T → ∞ and

ε, ε̄, δ → 0 at the appropriate rates. Nonetheless, there is

reason to believe that this bound is not tight – but improving

it would require us to use responsive mechanisms. Here is

why: although the principal will never have access to the

private signal I of the agent, he may attempt to learn (via

the agent’s past behavior) about the information structure

γ that generates it. In turn, the agent may anticipate this

and attempt to manipulate the principal’s policy by feigning

(partial) ignorance of her private signal. This suggests a less

conservative definition of informational robustness, where

the principal learns the quality of any information that the

agent decides to exploit.

IX. CONCLUSION

We studied single-agent mechanism design where the

common prior assumption is replaced with repeated inter-

action and frequent feedback about the world. Our primary

motivation was to remove a barrier (the common prior) that

makes it difficult to implement mechanisms in practice, but

this work can also be viewed as a learning foundation for

(robust) mechanism design. Indeed, our results show that

policies similar to those predicted by a common prior can

perform well even without distributional assumptions.

However, there are two caveats to this interpretation. First,

our policies are robust to agents that behave suboptimally

by up to some ε > 0. In contrast, most papers on local

robustness involve an optimizing agent with misspecified

beliefs. These notions coincide sometimes but not always.

In addition, our policies sometimes require informational

robustness. Second, the number of interactions T required

for our mechanisms to approximate the static common prior

game may be large. In particular, our bounds depend on

features of the stage game, like the number of policies,

responses, and states. These features may also affect the

agent’s learning rate, which in turn affects our bounds. In this

sense, the common prior assumption may be less appealing

in games that are more complex.

Interesting directions for future work include generalizing

to multi-agent problems, relaxing observability of the state to

observability of payoffs (i.e. bandit feedback), and tightening

the regret bound in theorem 3 by allowing the principal

to learn about the information structure of the agent. The

latter two changes would require a theory of behavior under

responsive mechanisms.
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