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Abstract

In economic theory, rationality assumptions are used to make predictions about choice be-
havior. However, because life involves so many decisions, rationality in practice means solving
a high-dimensional optimization problem. This can be computationally hard. In this paper, I
introduce a model of high-dimensional choice under uncertainty, along with an axiom of com-
putational tractability, to ask two questions. First, can tractability axioms, paired with rational-
ity axioms, be used to obtain tighter predictions for choice behavior? I prove two representation
theorems that provide an affirmative answer, by characterizing the set of tractable and rational-
izable choice rules. In particular, one of the representations corresponds to a heuristic known
as narrow choice bracketing. Second, when tractability constraints bind, will a self-interested
decision-maker make rationalizable choices? Not necessarily. I show that for many intractable
utility functions, no rationalizable algorithm obtains a constant approximation, yet every such
algorithm is weakly dominated by an irrational algorithm that does.
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1 Introduction
Economists are concerned with understanding choice behavior. We are especially concerned with
the following question: how does an individual’s behavior change as the options she is presented
with change? It is difficult to overstate the centrality of this question. A satisfactory answer is
needed for any kind of counterfactual inference (e.g. in mechanism design).

To this end, Paul Samuelson and subsequent researchers developed an elegant, axiomatic theory
of choice. The theory postulates that the individual’s choices will be coherent, in the sense that she
will avoid violating certain logical axioms. If these axioms hold, the individual behaves as if she
were maximizing a utility function when outcomes are known (Samuelson 1938). If outcomes are
random, she behaves as if sheweremaximizing her expected utility (vonNeumann andMorgenstern
1944). If outcomes are unknown, she behaves as if maximizing her subjective expected utility
with respect to some prior belief over the outcome (Savage 1954). Thus, decision theorists have
established a tight link between optimization and these axioms.

I will refer to subjective expected utility (SEU) maximization as rationalizable choice.1 Any
behavior that is inconsistent with SEU – and therefore, in violation of some axiom – will be re-
ferred to as irrational. Notably, rationalizability imposes only weak restrictions on the individual’s
(Bernoulli) utility function.2

In this paper, I introduce an additional axiom to choice under uncertainty: computational tractabil-
ity. That is, I consider the implications of computational constraints for an individual that faces
many choices in her lifetime (or equivalently, a single high-dimensional choice). This assumption
is adapted from the theory of computational complexity and, being suitable for computers, is quite
weak when applied to humans. In this setting, I ask and answer two questions.

First, can computational tractability refine rationalizability? That is, can we obtain tighter pre-
dictions about choice behavior, via restrictions on the Bernoulli utility function? Moreover, can
this refinement predict behavioral heuristics observed in practice? The answer is “yes”. In a high-
dimensional setting, SEU maximization is computationally intractable for most Bernoulli utility
functions. Consider behavior that satisfies (a) rationalizability, (b) tractability, (c) monotonicity,
and (d) invariance to relabelling of dimensions. I show that such behavior corresponds to the set
of additively separable utility functions, and is observationally equivalent to a heuristic known as
narrow choice bracketing in experimental economics (Read et al. 1999). Absent (d), behavior is
still limited to a special class of utility functions, which I characterize using a novel application of
a concept from graph theory, the Hadwiger number.

1There is no consensus in economics on what constitutes rationality, although it almost always refers to the exact
optimization of some objective function. For example, there has been some discussion over whether ambiguity averse
preferences should be regarded as rational (Al-Najjar and Weinstein 2009). However, it would be difficult to argue that
SEU maximization is not our modal definition. For that reason, I do not view my definition as especially controversial.
Furthermore, there is nothing unique to SEU maximization in this framework; one could easily undertake a similar
analysis with other definitions of rationality. I suspect the results would have a similar flavor.

2A Bernoulli utility function refers to the “utility” in “expected utility”; this describes the agent’s preferences over
sure outcomes. When I refer to an agent’s “utility function” without qualification, I mean the Bernoulli utility function,
not the expected utility.
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Second, in the presence of computational constraints, is rationalizability still compatible with
self interest? That is, consider an individual is rational insofar as she wants to maximize SEU, but
her objective is intractable. She has two options. First, she can maintain rationalizability while
optimizing an alternate Bernoulli utility function3. Second, she can resort to choices that are not
rationalizable but approximate her original utility function.

I demonstrate that, in terms of the agent’s original utility function, the first option may be un-
desirable. That is, for an important class of risk-averse utility functions, I show that restricting
attention to rationalizable behavior leads to a substantial loss of (approximate) optimality. The no-
tion of a rationalizability gap quantifies this loss; not only does a gap exist, but it is unbounded.
It follows that an analyst observing this individual’s choice behavior should not expect it to be
rationalizable, even though the individual is self-interested.

Insofar as high-dimensional choice is ubiquitous – after all, life is high-dimensional, as aremany
economicmodels – these results suggest that even highly-sophisticated agents may appear irrational
to an analyst that does not take into account computational constraints. Indeed, given the naivety of
narrow choice bracketing, sophisticated agents may be especially likely to appear irrational. This
suggests the need for new definitions of rationality that allow for approximate optimization.

Running Example. An insurance company has n clients. The ith client approaches the firm with
a contract ℎi that the firm can accept or reject. Contract ℎi specifies, as a function of an unknown
state �, the transfers zi that the firm will receive from client i. Depending on the kind of insurance,
� could describe e.g. the spot price of some asset at a specified date, the rate of mortage default in
the coming year, or the intensity of wildfires in the coming summer.

Negative transfers zi < 0 correspond to net payments from the firm to the client. This would
hold, for example, in any state where the insurance premium is smaller than the payout. The firm
may or may not have pre-existing arrangements with the clients. In the latter case, rejecting contract
ℎi leads to transfers zi = 0. Otherwise, rejection leads to some default contract.

In order to correctly manage its risk, the firm must solve a combinatorial optimization problem:
for each client i, whether or not to accept the contract ℎi. These decisions can be made simulta-
neously; the order in which clients arrive is not inherently relevant. Let us assume that the firm is
profit-maximizing and cares about the sum �i =

∑n
i=1 zi of transfers. Note that its utility function

ū might be nonlinear in �i for various reasons: risk aversion, nonlinear taxation, debt obligations,
managerial incentives, bankruptcy costs, etc. For concreteness, suppose that

ūn(z) = log

(

� +
n
∑

i=1
zi

)

(1)

where � > 0 is a constant. Finally, the firm has a prior belief over the state space and evaluates a
profile of contracts by their subjective expected utility E[ūn(z)

].
3Remember: rationalizable choice maximizes some utility function, not necessarily your utility function
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High-Dimensional Choice. The insurance provision problem described above is clearly high-
dimensional. There are n clients, where n could be arbitrarily large. Furthermore, we can pose the
same question to the same firm when presented with any number N > n clients. In my model,
we will relate the n-dimensional choice with theN-dimensional choice by assigning some default
value to the “missing” clients n + 1,… , N . For the utility function ūn specified above, the default
is obviously a transfer of zero. That is,

ūn(z1,… , zn) = ūN (z1,… , zn, 0,… , 0)

This construction relates a firm’s preferences across dimensions, and may be regarded as an implicit
coherence axiom. It is a minimal modification to the standard model that will allow us to formalize
the sense in which an optimization problem becomes difficult as n increases.

Before proceeding with this example, however, let us take a step back. An obvious question
has not been addressed. Why bother with high-dimensional choice at all? Or more broadly, why
should economists concern themselves with complication?

One easy answer is that many of our models require agents to solve high-dimensional optimiza-
tion problems.4 Another easy answer is that, assuming decision theory has empirical content, life
requires us to solve high-dimensional optimization problems.5

There is a more philosophical answer.6 Economists have a tendency to discourage complication,
under the conviction that simplification will highlight the essential features of a problem at hand. In
contrast, computer science often embraces complication – or rather, certain kinds of complication –
under the conviction that a problemmay not be interesting until it becomes complicated. The results
in this paper validate the latter perspective, without invalidating the former. They demonstrate that
applying the right amount of stress to models of choice can lead to qualitatively new insights. Of
course, applying the “right amount” of stress requires some tact. In his discussion of large worlds,
Savage (1954) illustrates the problems that arise when too much stress is applied.

Computational Tractability. Let us return to our protagonist, the insurance company. The firm
must decide, for each client i, whether to accept or reject the proposed contract ℎi. To make these
decisions, it relies on the ingenuity of its employees, as well as state-of-the-art computational re-

4Consider the insurance provision problem, or any number of financial problems that require investment decisions
across multiple asset classes. Or the multiple-item monopolist’s problem from the agent’s perspective. Or games on
networks, where edges define interactions. Or any number of dynamic models, from extensive-form games to DSGE in
macroeconomics. Indeed, preferences over dynamic processes have already received significant attention from decision
theorists (e.g. Kreps and Porteus 1978, Epstein and Zin 1989), albeit from a different lens.

5Even the coarsest representations of life are high-dimensional. Within the span of a few years, an individual may
choose whether to buy a car, where to invest her savings, how to structure her debt, whether to make an expensive
purchase, whether to start a family, etc. Whether these decisions are explicitly bound together is immaterial; they
are connected implicitly by common sources of uncertainty. For example, the individual cannot not know her career
trajectory, yet this is relevant to all the aforementioned decisions. Even if these phenomena are studied in isolation, it
is important to understand how factors that arise primarily in high-dimensional settings, like complexity, will reflect
themselves in a low-dimensional subsetting.

6Here, I am paraphrasing an insightful comment by Jason Hartline.
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sources. Can we expect the firm to maximize SEU, i.e. E[ū(z)]?
The reader may think to him or herself: “it depends on n”. However, recall that the firm may

be asked to make a choice with respect to any number n of clients. Clearly, for n sufficiently large,
even enumerating all the options will be infeasible. Therefore, the answer is simply “no”. Having
understood this, consider a more tactful question: can we expect the firm to maximize SEU within
time constraints that are growing at most polynomially in n?

The answer remains “no”. The utility function ū induces an NP-hard optimization problem (see
theorem 1). That is, if the firm could maximize SEU in polynomial time, it could provide efficient
solutions to a large class, NP-complete, of decision problems that are notoriously hard. Indeed,
such solutions have eluded computer scientists for more than half a century. Their nonexistence is
the content of a famous conjecture, P ≠ NP.

More generally, time complexity is an important factor in high-dimensional choice. In response,
this paper invokes an axiom of computational tractability. Formally, an agent’s choice rule – a map
from a menu of options to a choice from said menu – must be executable by a Turing machine with
runtime that is at most polynomial in the size of the menu.7 A Turing machine is an abstract model
of computation used to study computational complexity.

As I will elaborate, this definition of tractability is remarkably permissive and relatively conser-
vative. In decision theory, it has previously been employed in Apesteguia and Ballester (2010) and
Echenique et al. (2011). Apesteguia and Ballester (2010) consider the problem of an analyst trying
to rationalize a choice correspondence, in a model of choice under certainty that allows violations
of WARP. They find that the analyst’s problem is computationally hard in general. Echenique et al.
(2011) consider a question similar to mine, in a classic model of consumer choice. In that set-
ting, they show that tractability is toothless, insofar as any rationalizable choice correspondence is
tractable.

This definition is also used routinely in algorithmic game theory. For example, a notable line
of work studies the time complexity of finding Nash equilibria (see e.g. Daskalakis et al. 2009).
Hardness results suggest that Nash equilibrium is unlikely to arise in complicated games, regardless
of which introspective or learning process agents may employ. This approach is appealing precisely
because intractability is a property of the problem itself, not a property of the solution.8

Representations and Dichotomies. In our running example, I have established that maximizing
SEU is computationally intractable for the specified utility function ū. Nonetheless, suppose that
the choice behavior of the firm is rationalizable. Specifically, suppose that the firmmaximizes SEU
with respect to a strictly increasing utility function u ≠ ū. Under what conditions on u does the
firm’s choice rule satisfy tractability?

7Computer scientists should note that tractability is a property of the choice rule, and applies even if the choice
rule is not explicitly optimizing some objective. Loosely, rationalizability says that the agent is exactly solving an
optimization problem; imposing tractability in addition says she is exactly solving a tractable optimization problem.

8In contrast, the literature on bounded rationality often uses less permissive models of computation (e.g. Rubinstein
1986, Mandler 2015, Mandler et al. 2012, Jakobsen forthcoming). Of course, I have claimed that the existence of a
choice-making algorithm with polynomial runtime is a particularly weak definition of tractability. It may be too weak
for many applications.
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A rationalizable choice rule is label-invariant if u(z1,… , zn) = u(zk1 ,… , zkn) for any permu-
tation k. Suppose the firm restricts attention to label-invariant choice rules, a reasonable approach
given that ū is label-invariant and the order in which clients are presented seems immaterial. Then
the firm will behave as if she were using a particular algorithm called narrow choice bracketing
(NCB). Equivalently, the firm’s revealed utility function u must be additively separable, i.e.

u(z) =
n
∑

i=1
f (zi) (2)

for some strictly increasing function f . Absent label-invariance, the firm’s behavior corresponds to
a richer class of parameterized dynamic programming algorithms. The corresponding restrictions
on u can be characterized in terms of the Hadwiger number of a graphG with n nodes, where edges
represent pairwise violations of additive separability in u.

These results are presented in theorems 1 and 2, which demonstrate hardness via reductions
fromMAX2SAT andMIN2SAT. Respectively, these theorems assume P≠NP and the non-uniform
exponential time hypothesis. In economics, these correspond to representation theorems: given a
set of axioms, they characterize behavior as the solution to a restricted class of optimization prob-
lems. In computer science, these correspond to dichotomy theorems: they show that a collection
of optimization problems can be split into two complexity classes (e.g. P and NP-hard), and iden-
tify which problems belong to each class. Notably, these results apply even when the underlying
constraint satisfaction problem is trivial, as in the running example. For instance, they do not rely
on budget constraints to make optimization difficult. They hold even if the feasibility of an agent’s
choice in one dimension is independent of her choice in every other dimension.

The Rationalizability Gap. The previous results establish that rationalizability is with loss of
generality, in the sense that the revealed utility function u is restricted (2). Is it also with loss of
optimality? That is, in this high-dimensional setting where tractability constraints bind, can the
insurance company do better according to ū by adopting an irrational choice rule? If so, how much
better? The answers to these questions are “yes” and “unboundedly”.

The approximation ratio a ∈ [0, 1] of a tractable choice rule is a guarantee. For any set of
contracts ℎ, the acceptance/rejection decisions will obtain SEU that is at least an a-fraction of the
optimal choice. Roughly speaking, the rationalizability gapRGn = a∕b compares the best-possible
approximation ratio a to the best approximation ratio b that can be obtained by a rationalizable
choice rule.

For the utility function ū, a greedy algorithm obtains a 1∕2-approximation. In contrast, no ratio-
nalizable choice rule obtains a constant �-approximation for any � > 0. In this case, the rationaliz-
ability gap is unbounded in n. Here is one implication, assuming tractability. For any rationalizable
choice rule �, there is an irrational choice rule that performs at least as well as � on every set of
contracts and, for anyΔ > 0 and sufficiently large n, outperforms � byΔ on some set of n contracts.
Therefore, it is in the best interest of the firm to be irrational, in the sense that her choice behavior
will not be rationalizable.
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This concept is inspired by the revelation gap of Feng and Hartline (2018). In auction the-
ory, the revelation principle allows the auctioneer to restrict attention to direct mechanisms, where
bidders simply report their valuations. In prior-independent settings, where the auctioneer lacks
information about the bidder population, optimal auctions are infeasible and this result no longer
applies. Feng and Hartline (2018) prove the existence of a revelation gap for single-item auctions
with budgets, when the objective is welfare-maximization. Therefore, in an important class of
problems, restricting attention to direct mechanisms is with loss of (approximate) optimality.

Like Feng and Hartline (2018), I ask whether an important result in microeconomics survives
when the problem becomes more complicated. In both cases, exact optimization is infeasible.
The notion of a gap allows us to quantify the loss of optimality associated with highly-regarded
approaches like direct mechanisms and rationalizable choice. The gap will vary from problem
to problem; the trick is to identify an important class of problems where the gap is positive or
even large. Theorem 3 extends the aforementioned result – the unbounded rationalizability gap
– to a larger class of utility functions ū that satisfy a single-crossing condition and asymptotic
sublinearity.9

Organization. The paper is organized as follows. I introduce the high-dimensional choice model
in section 2, and formally define rationalizable and tractable choice. In sections 3 and 4, I present
two representation theorems that characterize the intersection of rationalizability and tractability.
In section 5, I consider two implications of these representation theorems: an axiomatic foundation
for narrow choice bracketing, and an unbounded rationalizability gap for certain utility functions.
Section 6 concludes.

2 Preliminaries
This section adapts a standard model of choice under uncertainty to a high-dimensional setting.
Let Θ be a set of states. States describe an uncertain feature of the world, e.g. whether a recession
occurs in the next year. Let Z be a set of consequences. Consequences describe outcomes that the
agent cares about, e.g. money. An act ℎ ∶ Θ → Z maps states to consequences. Acts describe an
option available to the agent, with consequences that depend on the realized state, e.g. an insurance
contract. A menuH describes a set of acts available to the agent.

Let  be a collection of menus. This describes the universe of decisions that the agent may
be faced with. For instance, one menu H ∈  might consist of an insurance contract ℎ with a

9This is not the first paper to question the normative foundations of rationality. For example, the literature on
the evolution of preferences has established that natural selection can lead to irrational choice rules (see e.g. Robson
1996). Manski (2011) provides another important perspective: the agent’s choices in counterfactual menus – menus
other than the one she was presented with – cannot affect her utility. Therefore, whether the agent’s counterfactual
choices are coherent should have not affect our evaluation of her behavior as “good” or “bad”. These arguments have
substantially influenced this paper, but there are points of contrast. Unlike evolution of preferences, I do not presume
knowledge of the process by which preferences are formed. Unlike Manski (2011), I provide a normative argument
against rationality, and quantify the loss of optimality.
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monthly premium of $100 and a deductible of $1000, as well as a contract ℎ′ with no deductible
but a premium of $200. Another menuH ′ might combine ℎ with a contract ℎ′′ with a premium of
$100 and a 50% copay. In the end, an agent is presented with a single menu. However, a priori she
could be presented with any menuH ∈ .

The agent’s behavior is described by a choice correspondence that maps any menu H ∈  to
a subset of acts ℎ ∈ H in that menu. To be clear, the agent must always express a preference, but
it does not need to be unique. For instance, an agent that is indifferent between two acts ℎ, ℎ′ ∈ H
may set �(H) = {ℎ, ℎ′}. From a computational perspective, a choice correspondence � describes
a problem, which specifies the set of acceptable outputs �(H) for any inputH ∈ . If no efficient
algorithm exists for a given �, we may regard that behavior as implausible.

2.1 High-Dimensional Choice
The consequences Z ⊆ ℝ∞ are infinite sequences z = (zi)∞i=1 of real numbers. There is a default
consequence e ∈ Z. A consequence z is called n-dimensional if zi = ei for all i > n. Recall
the running example: an n-dimensional consequence z represents transfers from n different clients.
Hypothetical clients i = n + 1,… ,∞ are associated with a default transfer of ei = 0.

Treating consequences as infinite sequences allows us to deal with n-dimensional consequences
for arbitrarily large n. But our interest is in finite-dimensional choice. That is why an n-dimensional
consequence concatenates a finite sequence z1,… , zn with entries n + 1 and onward of the default
consequence e. The existence of a default acknowledges that even in the absence of a meaningful
choice n + k, there must be some physical outcome associated with dimension n + k.
Assumption 1 (Consequence Richness). The consequence space includes all n-cubes, i.e.

∀n ≥ 1 ∶
[

z, z̄
]n ×

∞
∏

i=n+1
{ei} ⊆ Z

for some real numbers z < z̄.

An n-dimensional act ℎn maps states to n-dimensional consequences. An n-dimensional menu
Hn is a menu consisting exlusively of n-dimensional acts ℎn. The collection n consists of n-
dimensional menus. The agent could be presented with menus of varying dimensions n. That is,

 =
∞
⋃

n=1
n

The following assumption ensures that the state space is sufficiently large.10

Assumption 2 (State Richness). The state space Θ = [0, 1] is the unit interval.
10This is essential for theMAX/MIN2SAT reductions. This does not make it essential for the results, only the proofs.

Whether the results extend to a finite state space is left as an open question.
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It will be useful to focus on acts whose “effective” state space is finite.
Definition 1 (Regularity). A regular act ℎ is characterized by an increasing sequence of states
�0, �1,… , �m where �0 = 0 and �m = 1. For any states �, �′ that belong to the same interval
[�j−1, �j) for some integer j = 1,… , m − 1, the consequences ℎ(�) = ℎ(�′) are the same.

The following assumption ensures that the agent expresses preferences over sufficiently diverse
menus. Critically, I do not require the agent to solve complicated constrained optimization prob-
lems. It is well-known that even optimization under budget constraints is NP-hard (see the KNAP-
SACK problem). For other constraints, finding a feasible act may be hard (as in e.g. graph color-
ing), let alone finding an optimal one. The point here is that uncertainty in itself makes optimization
difficult, even if we do not invoke constraints that bind feasible choices across dimensions.
Assumption 3 (Menu Richness). Each collectionn includes all binary product menus of regular
acts. Formally, a binary submenuHi consists of at most two subacts ℎi ∶ Θ→

[

z, z̄
]

. Define

Hn = H1 ×H2 ×… ×Hn ×
∞
∏

i=n+1
{ei}

Then the product menuHn ∈ n.
In addition, each collectionn includes all binary menus of regular acts. Formally, if ℎ, ℎ′ are

n-dimensional regular acts then {ℎ, ℎ′} ∈ n.

To be clear, menu richness does not assert that a given agent will be presented with every menu
in this collection. Rather, it says that the agent should be capable of expressing a choice �(H) in
the hypothetical event that she is presented with some menuH ∈ .11

The following definition of rationalizability requires the agent to maximize her subjective ex-
pected utility (SEU) with respect to a uniform prior belief and some Bernoulli utility function.12

Assumption 4 (Rationalizability). There exists a continuous utility function u ∶ Z → ℝ such that

∀H ∈  ∶ �(H) = argmax
ℎ∈H ∫

1

0
u(ℎ(x))dx

In particular, all acts must be Lebesgue-measurable. This is always true for regular acts.
11Researchers will often be interested in models where the space of menus ′ is smaller than . In that case, it

is not enough to establish that optimization in ′ is tractable. Rather, the researcher would also have to argue that
evolution would prioritize optimization on menus ′ over some subset of menus  ⧵′ in which the agent does not
optimize. Keep in mind that the hardness of a computational problem does not come from any particular instance (or
menu); it comes from the need to simultaneously optimize over a large space of instances, despite using an algorithm
that has a finite description and limited time. So any suboptimal algorithm will feature trade-offs.

12The fact that the prior is uniform is convenient but seems entirely inessential. I conjecture that any absolutely
continuous prior with full support would suffice. What is essential to the proofs is that the prior does not have finite
support, which undermines our assumption that the state space is rich. Finally, one could interpret this as a model of
objective expected utility maximization where the state is known to be uniformly-distributed.
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For an axiomatic justification of SEU, I refer the reader to the lecture notes by Kreps (1988), or
the highly-influential paper by Anscombe and Aumann (1963). The original argument, of course, is
due to Savage (1954). The underlying coherence axioms reflect logically-appealing restrictions on
choice. For example, by transitivity, if the agent chooses ℎ = �({ℎ, ℎ′}) and ℎ′ = �({ℎ′, ℎ′′}), then
she must also choose ℎ = �({ℎ, ℎ′}). To be clear, I do not axiomatize SEU for high-dimensional
choice. These references are meant to clarify why rationalizability is associated with SEU.

The following assumption restricts attention to settings (like insurance provision) where conse-
quences are desirable. In terms of notation, let z ≥ z̃ if zi ≥ z̃i for all dimensions i. Let z > z̃ if
z ≥ z̃ and there exists a dimension j where zj > z̃j .
Assumption 5 (Monotonicity). The utility functions u and ū are strictly increasing. That is, z ≥ z̃
implies u(z) ≥ u(z̃) and z > z̃ implies u(z) > u(z̃).13

This completes the choice-theoretic description of the model.

2.2 Axiom of Computational Tractability
A deterministic Turing machine (TM) is an abstract model of computation that takes in a string of
characters and outputs another string. The precise definition will not be important here.14 How-
ever, it is important to appreciate the apparent universality of this model. Consider the following
discussion by Bernstein and Vazirani (1997):

Just as the theory of computability has its foundations in the Church-Turing thesis, com-
putational complexity theory rests upon a modern strengthening of this thesis, which
asserts that any “reasonable” model of computation can be efficiently simulated on
a probabilistic Turing machine (an efficient simulation is one whose running time is
bounded by some polynomial in the running time of the simulated machine). Here, we
take reasonable to mean in principle physically realizable.

In particular, if natural phenomena (e.g. neurological, social, or evolutionary processes) can be
efficiently simulated by a model of computation, the strong Church-Turing thesis implies that im-
possibility results for TMs are binding on these natural phenomena as well.

The Cobham-Edmonds thesis further asserts a computation is tractable only if its runtime is at
most polynomial in the length k of the input string. In other words, any algorithm whose runtime is
superpolynomial (e.g. exponential) in k will take an unreasonable amount of time for moderately
large k – regardless of how powerful the computer running it is. Clearly, the converse is not true.
A computation that requires k2100 steps has time complexity O(poly(k)) but is clearly infeasible.
Furthermore, even O(k) time complexity can be challenging if the computer is not up to the task,
as anyone who has struggled with addition can attest.

13The fact that u is strictly increasing (as opposed to weakly) is convenient. However, it is certainly not necessary to
prove NP-hardness. For example, the reductions in this paper can easily be applied to the maximum u(z) = max{zi}∞i=1and the minimum u(z) = min{zi}∞i=1.14I refer the interested reader to any textbook on computational complexity (e.g. Arora and Barak 2009).
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These two theses – strong Church-Turing and Cobham-Edmonds – constitute a leading view of
our physical world.15 This paper considers their implications for high-dimensional choice. Given
that premise, the following axiom is the weakest possible restriction on behavior.
Assumption 6 (Tractability). There exists a TMM that satisfies the following properties.

1. For an input string that describes menuH ∈ , the output string describes ℎ ∈ �(H).

2. The runtime ofM for inputH ∈  is at most polynomial in the description length ofH .

This definition of tractability is implicitly worst-case: the upper bound on the runtime is applied
uniformly across all instancesH ∈ . This is the correct definition. In axiomatic decision theory,
a representation and its underlying axioms apply to all menus in a collection; indeed, researchers
lean heavily on this fact in their proofs. In particular, a choice correspondence that maximizes SEU
for “most” but not all menus will violate coherence axioms and is not rationalizable.16

3 Special Representation
LetH be a product menu of regular acts. The description length ofH is increasing linearly in (a)
the dimension n, (b) the sizem of the effective state space, and (c) the number l of acts per submenu.
However, the number of acts ℎ in a product menuH is growing exponentially in n. Every possible
combination of subacts in each dimension must be accounted for. This means that the brute-force
algorithm – i.e. evaluate the payoff of every ℎ ∈ H and choose the best one – is impractical.
Furthermore, the bottleneck is driven by the dimension n, not m or l per se.

In this section, we will see that the brute-force algorithm – although naive and impractical –
is likely the best we can do, barring relatively strong restrictions on the utility function u. These
restrictions are the content of representation theorems 1 and 2, which characterize the set of utility
functions that are consistent with our tractability axiom. These results can also be thought of as
dichotomy (or trichotomy) theorems: they partition a set of rationalizable choice correspondences
� into two (or three) complexity classes, based on properties of u. In the next section (5.2), I will
present algorithms for SEU maximization when u satisfies the relevant properties.

3.1 Complexity Classes
Our results are only meaningful to the extent that several widely-believed conjectures are true. I will
introduce these conjectures momentarily. Essentially, they assert that the best known algorithms for

15The main challenge to the strong Church-Turing thesis arises from the possibility of quantum computers, which
can be formalized as quantum Turing machines (QTM) (Bernstein and Vazirani 1997). Although QTMs may be able
to efficiently solve certain problems that are beyond the reach of TMs, it seems significantly less likely that they can
efficiently solve NP-hard problems like 3SAT or MAX2SAT. Therefore, while I do not explicitly consider tractability
from the perspective of a QTM, there is no obvious reason why the results should differ, except that I would replace
conjectures like P ≠ NP with an appropriate quantum analog.

16To be clear, this irrational behavior appears reasonable and plausible a priori. The entire point of this paper is that
alternative theories of choice – dealing with “approximate” or “frequent” optimization – are needed. But we cannot
make this point effectively if we modify the existing theory at the same time that we are evaluating it.
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certain fundamental problems are, indeed, the best possible. The evidence for these conjectures is
straightforward: despite decades of effort by myriad computer scientists, the best known algorithms
are essentially no better than brute-force search.17

First, note that a central task in computational complexity theory is categorizing problems ac-
cording to their time complexity. Several complexity classes are defined in terms of decision prob-
lems, i.e. problems with a binary output. For example, “does graph G have a Hamiltonian path” is
a decision problem.

• The class DTIME (f (l))18 consists of decision problems that can be solved by algorithms
with runtime that does not exceed f (l) on any input string of length l.

• The class P consists of decision problems for which polynomial-time TMs exist, i.e.
P = DTIME (poly(n))

• The class NP19 consists of decision problems for which polynomial-time verifiers exist. A
verifier is a TM that, given a proposed solution, outputs “accept” if the solution is valid and
“reject” otherwise. In the previous example, the verifier takes in a sequence p of nodes in G
and determines whether p is a Hamiltonian path.

• The class NP-hard consists of problems that are “as hard as” any problem in NP. That is, given
a polynomial-time algorithm for any NP-hard problem, we could devise a polynomial-time
algorithm for every problem in NP. An algorithm that takes a solution to one problem and
outputs a solution to another problem is known as a reduction.

• The class NP-complete is the intersection of NP and NP-hard. Cook (1971) proved that NP-
complete is nonempty. Karp (1972) identified a number of additional NP-complete problems.
The NP-complete problems are all polynomial-time reducible to one another.

It is immediate that P ⊆ NP. It is widely believed that P ⊊ NP, but this has never been proven. The
conjecture P ≠ NP captures the belief that NP-complete problems are, in fact, hard.

As defined, the complexity classes DTIME, P, and NP (but not NP-hard) refer to decision prob-
lems, but the choice correspondence � is an optimization problem. One can define a decision
problem for �, i.e. “does there exist an act ℎ ∈ H that obtains SEU exceeding some threshold”
and it is easy to verify that the decision problem is in NP. Nonetheless, I will abuse notation and
interpret e.g. � ∈ P in the natural way, i.e. the optimization problem � is tractable.20

17Keep in mind that the definition of “better” is very specific, refering to the asymptotic rates of worst-case runtime.
For better or worse, this is the language in which the conjectures are stated. In particular, this is the benchmark that –
dare I say – complexity theorists have the greatest incentives to improve upon.

18The “D” indicates that we are restricting attention to “deterministic” TMs.
19The “N” indicates that we are allowing “non-deterministic” TMs. There are two equivalent definitions of NP: the

one given above, and another that refers to non-deterministic TMs.
20The distinction between decision vs. optimization only affects my positive results. If the decision problem is NP-

complete, then either both versions have polynomial-time algorithms or neither do (Arora and Barak 2009, theorem
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It is also convenient to define the exponential time hypothesis (ETH), although we will not refer
to this until later on. An important NP-complete problem is known as 3SAT (see appendix B.2 for
more details about satisfiability problems). The ETH is a strengthening of P ≠NP that claims there
is no subexponential-time algorithm for 3SAT. Formally, it asserts

3SAT ∉ DTIME
(

2o(n)
)

where n is the number of variables in a 3SAT instance.

3.2 Label-Invariant Case
The first representation theorem (1) applies to restricted set of choice correspondences. Consider
a setting in which the consequences zi are interchangeable across dimensions, even if the feasible
choices Hi vary across dimensions. This is often a natural assumption if consequences are mone-
tary. For instance, in our running example, the insurance company does not care whether it obtains
zi dollars from client i and zj dollars from client j, or vice-versa.
Assumption 7 (Label-Invariance). The utility function u is invariant to finite permutations of z.
That is, u(z) = u(zk1 ,… , zkn , zn+1,…) for any n and permutation k of z1,… , zn.

Under label-invariance, the boundary between tractable and intractable choice is relatively easy
to describe. Narrow choice bracketing (NCB), defined later on (10), is a simple heuristic for SEU
maximization. Essentially, the agent optimizes in each dimension i, without considering her choices
in dimensions j ≠ i. The additively separable utility functions are precisely those for which NCB
is without loss. As it turns out, NCB is effectively the only tractable behavior consistent with
rationalizability, monotonicity, and label-invariance.
Definition 2 (Additive Separability). A utility function u is additively separable if there exist effi-
ciently computable functons fi ∶

[

z, z̄
]

→ ℝ such that

u(z) =
∞
∑

i=1
fi(zi)

for all consequences z ∈ Z. Naturally, if u satisfies monotonicity (5) then each fi is strictly in-
creasing. If u satisfies label-invariance (7) then fi = fj for all i, j.
Theorem 1. Assume richness (1, 2, 3), rationalizability (4), monotonicity (5), label-invariance (7).
Then
2.19). Here is a brief intuition. The decision problem only determines whether there exists a satisfactory act ℎ∗, but
the following algorithm can be used to identify ℎ∗. By the Cook-Levin theorem, the input to an NP-complete decision
problem can be reformulated as an instance of SAT, i.e. a boolean formula with variables x1,… , xk. If P = NP, then
SAT can be solved in polynomial time. Set x1 = true to obtain a subformula, and determine whether the subformula
is satisfiable. If yes, maintain that value. If no, set x1 = false. Move on to x2 and repeat. If the original formula was
satisfiable, this will return the satisfying assignment, which can be used in turn to find ℎ∗.
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1. Assume tractability (6). If P ≠ NP, then u is additively separable.

2. Restrict  to product menus of regular acts, without violating menu richness (3). If u is
additively separable, then � is tractable, i.e. � ∈ P.

The proof is deferred to appendix B.2. For now, I provide a very high-level proof sketch. Sup-
pose u is not additively separable. Assume for contradiction that � is tractable. Let f be a boolean
formula with n variables. I construct an n-dimensional menuHf such that �(Hf ) gives a solution
to the problem known as MAX2SAT on instance f . Thus, if � can be solved in polynomial time,
so can MAX2SAT. But MAX2SAT is NP-hard, so this contradicts P ≠ NP. Conversely, suppose u
is additively separable. Then a heuristic called narrow choice bracketing solves � in polynomial
time without loss.

Technically, this is a straightforward corollary of theorem 2, one that uses the structure imposed
by label-invariance to obtain a starker result. But pedagogically, the order is reversed: one should
understand theorem 1 before theorem 2.21

4 General Representation
Absent label-invariance, choice behavior is much richer and the boundary between tractability and
intractability is much less clear. In particular, it may not be obvious that there exists a useful vocab-
ulary to describe that boundary. Nonetheless, theorem 2 obtains a nearly-complete characterization
of choice correspondences that are rationalizable, tractable, and monotone.

To begin, consider the following counterexamples to theorem 1 sans label-invariance. These
utility functions are tractable but not additively separable.

1. u(z) = ∑

i odd
√

zi + zi+1

2. u(z) = ∑∞
i=1

√

zi + zi+1

3. u(z) = z1 ⋅∑n
i=2 zi

4. u(z) = log
(

∑100
i=1 zi

)

+
∑∞

i=101 zi

These examples have an important commonality. Suppose we fix z−ij so that u(zi, zj ∣ z−ij) is effec-
tively a function of zi and zj . For most pairs (i, j) of dimensions, this utility function is additively
separable in (zi, zj). In example 1, this holds for all i, j where i is odd and j ≠ i + 1 or where j is
odd and i ≠ i + 1. In example 2, this holds for all i, j where |i − j| > 1. In example 3, this holds
for all i, j where i, j ≠ 1. In example 4, this holds for all i, j where i > 100 or j > 100. The next
two definitions formalize this idea.

21In both cases, the hardness proofs involve polynomial-time reductions from either MAX2SAT or MIN2SAT to �.
These reductions are thematically similar, but label-invariance puts the essential arguments into greater relief. On the
other hand, label-invariance obscures the positive result (existence of efficient algorithms) by making it trivial.
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Definition 3 (PairwiseViolation). A finite-dimensional consequence z ∈ Z and quadruple (a, b, c, d) ∈
[z, z̄]4 constitutes a (i, j)-pairwise violation of additive separability if

u
(

… , zi−1, a, zi+1,… , zj−1, b, zj+1,…
)

+ u
(

… , zi−1, c, zi+1… , zj−1, d, zj+1,…
)

≠ u
(

… , zi−1, a, zi+1,… , zj−1, d, zj+1,…
)

+ u
(

… , zi−1, c, zi+1,… , zj−1, b, zj+1,…
)

The utility function is (i, j)-pairwise additively separable if no (i, j)-violation exists.

Remark 1. If u is (i, j)-pairwise additively separable then

u(z) = �(z−j) + �(z−i) (3)
for some functions �, �.22 If u is label-invariant, it is sufficient to verify that there exist no violations
with a = b and c = d.23

Definition 4 (Violation Graph). The violation graph Gn consists of n nodes. There is an edge
between nodes i, j iff there exists an n-dimensional (i, j)-pairwise violation of additive separability.

Example 1. Here are some examples of violation graphs.

1. The violation graph G8 of u(z) =
∑∞

i=1
√

zi is empty, i.e.

1 2

3

4

56

7

8

2. The violation graph G8 of u(z) =
∑∞

i=1

√

z2i−1 + z2i is

22To see this, set a = zi, b = zj , c = d = z in the inequality (now equality) used to define violations.
23To see this, set zi = a = b and zj = c = d in the same inequality (now equality). For a counterexample in the

absence of label-invariance, consider f (a, b) = a + b − 1
3 (a − b)

3.
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1 2

3

4

56

7

8

3. The violation graph G8 of u(z) =
∑∞

i=1

√

zi + zi+1 is

1 2

3

4

56

7

8

4. The violation graph G8 of u(z) =
√

∑∞
i=1 zi is

1 2

3

4

56

7

8

Loosely, I will argue that u induces a tractable choice correspondence � if and only if the vio-
lation graph G is sparse. In particular, this clarifies the role that label-invariance played in theorem
1. If u satisfies label-invariance, then Gn is either a sequence of complete graphs or a sequence
of empty graphs. If Gn is a sequence of empty graphs, then u is additively separable. By restrict-
ing attention to these extremes, we can easily distinguish between sparse and dense graphs, and
therefore, between tractable and intractable utility functions.
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In contrast, without label-invariance, any well-defined sequence Gn is consistent with some
utility function. So we cannot avoid the difficult question: what is the right measure of sparsity?
Fortunately, it turns out that the appropriate definition was formulated many decades ago by Had-
wiger (1943), in his famous conjecture about the chromatic number of graphs.

4.1 Measuring Graph Sparsity
Consider an undirected graph G = (V ,E). The order of G is the number |V | of nodes, while its
size is the number |E| of edges. The degree of node i ∈ V is the number of nodes j ∈ V such
that (i, j) ∈ E is an edge. Let �(G) be the minimal degree of any node i ∈ V . The average degree
avg(G) = |E|∕|V | is the ratio of the graph’s size to its order.
Definition 5 (Minor). Let G,H be graphs. Then S is a minor of G if it can be formed from G by
repeatedly applying the following two operations:

1. Deleting a node i and all of its incident edges (i, j).

2. Contracting an edge (i, j). This operation deletes nodes i and j and replaces them with the
combined node k. Furthermore, it replaces any edges (i, l) and (j, l) with a new edge (k, l).

Definition 6 (Degeneracy). The degeneracy dgn(G) of a graph G is the largest number k such that
�(S) ≤ k for all subgraphs S ofG. Furthermore, the contraction degeneracy cdgn(G) is the largest
number k such that �(S) ≤ k for all minors S of G.

Definition 7 (Hadwiger Number). The Hadwiger number Had(G) of a graph G is the order of its
largest complete minor S (a.k.a. largest clique minor).

Example 2. I will illustrate the Hadwiger number graphically. Let G be the following graph.

1 2

45

36

What is Had(G)? Start by deleting node 4.
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1 2

45

36

Contract the edge between nodes 1 and 2.

1 2

5

36

Obtain the following minor of graph G. Note that it is complete.

1, 2

5

36

Remember, Had(G) is the number of nodes in the largest complete minor. In fact, this is the largest
complete minor, so Had(G) = 4.

It will be useful to define a sequence Sn of large clique minors of Gn.
Definition 8 (Violation Minor). Let the violation minors Sn be a sequence of complete graphs,
where Sn is a minor of Gn and the order of Sn approximates the Hadwiger number, i.e.

|Sn| = Θ
(

Had(Gn)
)

When describing the minor, each node i of Sn is associated with a subset Vi of the nodes of Gn,
where nodes j ∈ Vi were combined via edge contractions to form node i.
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At this point, I have defined several measures of graph sparsity. The next proposition describes
the relationship between them.
Proposition 1. Let f, g be functions of graphs. Let f ⪯ g if f (G) is bounded above by a linear
function of g(G), up to log factors, and uniformly across all graphs G. This defines a partial order.
The graph measures defined above can be totally-ordered:

�(G) ≺ avg(G) ≺ dgn(G) ≺ cdgn(G) ∼ Had(G)

4.2 Non-Uniform Complexity
In order for a choice correspondence to be tractable, the violation graph must become very sparse,
very quickly as the dimension increases. In particular, the Hadwiger number of Gn may increase at
most log-polynomially in n. That is the content of my next result. To prove this, I require knowledge
of the violation graph Gn for positive results, and knowledge of the violation minor Sn for hardness
results. Both of these objects can be described with poly(n) space. However, it is unclear whether
they can always be described in poly(n) time.

Fortunately, by adopting the language of non-uniform complexity, we can largely bypass this
issue. In our setting, � ∈ P∕poly means that for any n, there is an efficient algorithm for making
choices from n-dimensional menus. One can describe this algorithm using at most poly(n) space.
However, describing this algorithm will take more than poly(n) time, unless � ∈ P. Nonetheless,
fixing an arbitrarily large n, an agent with unlimited preprocessing time can quickly make choices
ℎ ∈ �(H) when faced with n-dimensional menusH .

Next, I state this more formally in the definitions 9 and remark 2. Then, I state theorem 2.
Definition 9 (Advice). Let the sequence Sl of strings be advice. An Sl-advised TM takes in advice
Sl and an input string of length l, before returning an output string. Let

DTIME (f (l)) ∕Sl

be the class of problems that can be solved in f (l) time by some Sl-advised TM. Define P∕Sl and
NP∕Sl similarly, as the analogs to the complexity classes P and NP for Sl-advised TMs.

In a slight abuse of notation, when discussing choice problems we will refer to Sn-advised TMs
as taking in advice Sn and an n-dimensional menuH ∈ n.

Remark 2 (Non-Uniform Complexity). The complexity class P∕poly consists of problems that can
be solved in polynomial time, given some advice string Sl satisfying |Sl| = O(poly(l)). Formally,

P∕poly =
⋃

|Sl|=O(poly(l))
P∕Sl

The conjecture NP ⊄ P∕poly is stronger than P ≠ NP, since P ⊂ P∕poly. Its failure would imply a
partial collapse of the so-called polynomial hierarchy (Karp and Lipton 1980). Similarly, we can
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strengthen the ETH to the non-uniform ETH, which states
3SAT ∉ DTIME

(

2o(n)
)

∕poly (4)
One can find several definitions of the non-uniform ETH, but we will stick to (4).

4.3 General Case
I can now state my main theorem, followed by a corollary that is weaker but easier to interpret.
Theorem 2. Assume richness (1, 2, 3), rationalizability (4), and monotonicity (5). Then

1. Assume tractability (6). If NP ⊈ P∕Hn, then Had(Gn) = o(poly(n)). In particular, this holds
under the conjecture NP ⊄ P∕poly.

2. Assume tractability (6). If 3SAT ∉ DTIME (2o(n)) ∕Hn, then Had(Gn) = O(log(poly(n))). In
particular, this holds under the non-uniform ETH.

3. Restrict  to product menus of regular acts, without violating menu richness (3). If
Had(Gn) = O(log(poly(n))) (∗)

then � ∈ P∕Gn. In particular, this implies � ∈ P∕poly.

Corollary 1. Assume richness (1, 2, 3), rationalizability (4), monotonicity (5), tractability (6), and
the non-uniform ETH. Then the Bernoulli utility function u satisfies property (∗).

Property (∗) asserts that the violation graph becomes very sparse, very quickly as the dimension
increases. To see how this property can be used to distinguish between tractable and intractable
utility functions, see the following examples. It is also worth noting that, given a violation graphGn

associated with some utility function u, it is possible to verify property (∗) in polynomial time (see
appendix A). In that sense, it is not too difficult to translate this result into meaningful restrictions
on the utility functions that an agent may possess. With that said, the strength of property (∗) will
become clearer in section 5.2, when I use it to prove the existence of a sizable rationalizability gap.
Example 3. I revisit the examples from earlier.

1. Suppose the revealed utility function is

u(z) =
∞
∑

i=1

√

zi

This is additively separable and label-invariant. Therefore, by my first (special representa-
tion) theorem, � is tractable.

20



2. Suppose the (revealed) utility function is

u(z) =
∞
∑

i=1

√

z2i−1 + z2i

This is not label-invariant, but Had(Gn) = 2. Therefore, by my second (general representa-
tion) theorem, � is tractable.

3. Suppose the (revealed) utility function is

u(z) =
∞
∑

i=1

√

zi + zi+1

This is not label-invariant, but Had(Gn) = 2. Therefore, by my second (general representa-
tion) theorem, � is tractable.

4. Suppose the (revealed) utility function is

u(z) =

√

√

√

√

∞
∑

i=1
zi

This is label-invariant but not additively separable. Therefore, by my first (special represen-
tation) theorem, � is not tractable, assuming that P ≠ NP.

Note that Had(Gn) = n. As expected, this violates property (∗).

The proof is deferred to appendix B.3. For now, I provide a very high-level proof sketch. Sup-
pose property (∗) fails. Assume for contradiction that � is tractable. Take the largest complete
minor Sn of Gn as advice. Let k be the order of Sn, i.e. the Hadwiger number of Gn. Let f be a
boolean formula with k variables. I construct an n-dimensional menuHf such that �(Hf ) gives a
solution to the problem known as MAX2SAT on instance f . Since � is solvable in poly-time and
k = !(log n), MAX2SAT can be solved in subexponential time with advice Sn. Then 3SAT can be
solved in subexponential time with polynomial advice, which contradicts non-uniform ETH.

Conversely, suppose property (∗) holds. I construct a dynamic programming algorithm that
generalizes choice bracketing. It is parameterized by a graph G. If G does not include an edge
(i, j), the algorithm ignores any dependence in u between dimensions i and j. I show that, if this
algorithm finds itself searching over a d-dimensional set, then there exists a complete minor of G
with order d. Therefore, d ≤ Had(Gn). Taking Gn as advice, set G ∶= Gn. It is straightforward
to show that this algorithm solves � exactly. By property (∗), brute-force search over Had(Gn)-
dimensional sets takes O(n) time, and the algorithm halts in poly(n) time.
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5 Implications
In this section, I will consider two implications of my representation theorems: an axiomatic foun-
dation for narrow choice bracketing and the existence of a rationalizability gap. To that end, it will
be useful to distinguish between the agent’s revealed utility function u and her hedonic utility func-
tion ū. The former (defined by assumption 4) corresponds to the utility function that rationalizes
the agent’s behavior �. The latter corresponds to the agent’s true objective function, supposing it
exists. In the absence of computational constraints, it is natural to assume u = ū. In their presence,
it is entirely plausible that u ≠ ū.

I also restrict attention to product menusH of regular acts (the binary menus required by menu
richness (3) are easy to recognize and handle using auxilliary algorithms).

5.1 Narrow Choice Bracketing
Theorem 1 can be viewed as a positive result. It establishes that narrow choice bracketing (NCB)
is an implication of – rather than a challenge to – rationality in high-dimensional settings. This
may be surprising, given that Read et al. (1999) proposed choice bracketing as a way to explain
apparently irrational behavior observed in experiments. We refer to their definition:

[Choice bracketing] designates the grouping of individual choices together into sets.
A set of choices are bracketed together when they are made by taking into account the
effect of each choice on all other choices in the set, but not on choices outside of the set.
When the sets are small, containing one or very few choices, we say that bracketing is
narrow, while when the sets are large, we say that it is broad. Broad bracketing allows
people to consider all the hedonic consequences of their actions, and hence promotes
utility maximization. Narrow bracketing, on the other hand, is like fighting a war one
battle at a time with no overall guiding strategy, and it can have similar consequences.

In our setting, we identify NCB with the following heuristic algorithm.
Definition 10 (NCB Algorithm). Specify a utility function u. Given a product menuH , the narrow
choice bracketing (NCB) algorithm proceeds as follows:

1. Iterate i = 1,… , n.

(a) Define

ℎ̂i ∈ arg maxℎi∈Hi ∫

1

0
u
(

ℎi(x), z,… , z
)

dx

2. Return act ℎ̂, which belongs to the menuH by construction.

For many objectives ū, the NCB algorithm will fail to optimize SEU. Of course, as Rabin and
Weizsäcker (2009) observe, there are utility functions ū for which NCB is without loss of optimal-
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ity. In our setting, this occurs when ū is additively separable. Furthemore, NCB can always be
rationalized using a revealed utility function u that is additively separable.24

Assuming that the revealed utility function u exists, is strictly increasing, and is label-invariant,
theorem 1 implied that the tractability is equivalent to additive separability of u. Furthermore,
NCB is without loss of optimality if and only if u is additively separable. In that sense, tractability
is observationally equivalent to NCB.

Having provided an axiomatic foundation for NCB, it is natural to ask whether this behavior is
observed in practice. Indeed, there is considerable experimental evidence that choice bracketing
is a feature of human decision-making (Andersen et al. 2018; Andreoni et al. 2018; Martin 2017;
Rabin and Weizsäcker 2009; Read et al. 1999). Some evidence and interpretations tend towards
framing effects, where the type of bracketing depends on the framing of the problem (Brown et al.
2017; Haisley et al. 2008; Moher and Koehler 2010). Others tend towards bounded rationality,
where bracketing is a response to the complexity of combinatorial optimization (Brown et al. 2017;
Koch and Nafziger 2019; Pennings et al. 2008; Simonsohn and Gino 2013; Stracke et al. 2017).

Finally, while the assumption of label-invariance is not appropriate for many settings, it may
be more plausible in experimental settings where consequences zi are monetary and dimensions
i = 1,… , n correspond to different gambling problems (as in e.g. Rabin and Weizsäcker 2009).

5.2 The Limits of Rationality
Here, our goal is to better understand the limitations of rationality in the presence of time con-
straints. It is obvious from the representation theorems that optimizing certain objective functions
is difficult. The best the agent can hope for is a tractable choice rule that is approximately optimal
in some sense. However, it is not obvious whether this choice rule will be rationalizable or not.
To be more precise, although optimization is infeasible, certain tractable choice rules may deliver
better approximations to the optimum than others. The rationalizability gap quantifies how much
better the agent can do if she is willing to use a choice rule that is not rationalizable.

Let �̄ be the choice correspondence that is optimal for ū. Throughout this section, I make several
assumptions for convenience. First, ū can be efficiently computed in the sense of proposition 3.
Second, ū is monotone (5). Third, ūn(z,… , z) = 0. Fourth, z ≤ 0.
Definition 11 (Approximation). Let � ∈ [0, 1]. A choice correspondence� is a �(n)-approximation
for �̄ if

∀H ∈ n ∶ ∫

1

0
ū ([�(H)](x)) dx ≥ �(n)∫

1

0
ū
(

[�̄(H)](x)
)

dx

The approximation ratio APXn(� ∣ ū) is at least Ω(�(n)) if there exists a �(n)-approximation for �̄.
I define the rationalizability gap. Let Φ be the set of choice correspondences that are rich (1,

2, 3) and tractable (6). Let ΦR ⊆ Φ consist of � ∈ Φ that are rationalizable (4) and monotone
24The reason why NCB may be thought of as “irrational” is because it is rationalized by an additively separable

u even though we believe that the true objective ū is not additively separable. But from the perspective of revealed
preference, rationalizability is what matters.
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(5). Recall that theorem 2 characterized ΦR in terms of violation graphs. In contrast, Φ contains a
much richer expanse of irrational choice correspondences.

If exact optimization of hedonic SEU is tractable, then �̄ ∈ ΦR. Trivially, restricting attention
to � ∈ ΦR is without loss of optimality. However, if �̄ is intractable, then �̄ ∉ Φ and the agent’s
problem becomes more interesting. Should she exactly optimize an alternative utility function
u ≠ ū? Or should she resort to irrational choice in the hopes of obtaining a better approximation to
her true objective ū? To answer this question, wemust first quantify the (possible) loss of optimality
associated with restricting attention to ΦR.

A natural way to define the rationalizability gap is as the ratio of the best approximation ratio
obtained by � ∈ Φ to the best approximation ratio obtained by � ∈ ΦR. Formally, this would
correspond to

sup�∈ΦAPX
n(� ∣ ū)

sup�∈ΦR APX
n(� ∣ ū)

However, the reader may object to the use of approximation ratios to rank choice correspondences,
on the grounds that the worst-case criterion is too pessimistic. For this reason, I strengthen the
requirement. I say that a rationalizability gap exists if for every rationalizable choice correspon-
dence, there exists an irrational choice correspondence that (a) weakly dominates it and (b) obtains
a strictly better approximation ratio. In that sense, weak dominance is used to rank algorithms, and
the worst-case approximation ratio is only used to quantify the gap.

To define this formally, I require additional notation. For a given choice rule�, letΦ∗(�, ū) ⊆ Φ
be the set of tractable choice rules that perform at least as well as � on any menuH ∈ . So, any
choice correspondence in Φ∗(�, ū) is clearly at least as good as � from the perspective of an agent
with hedonic utility function ū.
Definition 12 (Rationalizability Gap). The rationalizability gap is defined as

RGn(ū) = inf
�∈ΦR

sup�′∈Φ∗(�,ū)APX
n(�′ ∣ ū)

APXn(� ∣ ū)

To show that the rationalizability gap is sizable (i.e. unbounded in n), I need to prove two
claims. First, I will show that there exists a decent approximation algorithm for certain objectives
ū; namely, the greedy algorithm. Afterwards, I will show that no rationalizable algorithm obtains
a decent approximation, for certain objectives ū.

5.2.1 The Greedy Algorithm

Next, I describe an irrational greedy algorithm. This can be thought of as a modified version of
the NCB algorithm. Instead of optimizing in each dimension myopically with respect to the her
beliefs, the agent allows her beliefs to change across dimensions. The agent puts less probability on
states where the agent has already secured good outcomes by her choices in previous dimensions.
Thus, the agent’s behavior is not consistent with SEU maximization for a fixed belief.
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Definition 13 (Greedy Algorithm). Specify a utility function u. Given a product menu H , the
algorithm proceeds as follows:

1. Initialize the act ℎ̂ by setting ℎ̂i(�) = z for all dimensions i and states �.

2. Iterate i = 1,… , n.

(a) Redefine

ℎ̂i ∈ arg maxℎi∈Hi ∫

1

0
u
(

ℎi(x), ℎ̂−i(x)
)

dx

3. Return act ℎ̂, which belongs to the menuH by construction.

This generalizes Johnson’s (1974) approximation algorithm for MAXSAT. Loosely, MAXSAT
corresponds to the utility function ū(z) = maxi zi. However, the algorithm performs well for a
much larger class of utility functions, including a variety of risk-averse utility functions where

ū(z) = g

(

n
∑

i=1
zi

)

where g is strictly increasing and concave.
Definition 14 (SCC). The utility function ū satisfies the single-crossing condition (SCC) if

u(z) − u(z′) ≥ u(z + z′′) − u(z′ + z′′)

for any finite-dimensional consequences z, z′, z′′ ∈ Z where z′′ ≥ 0⃗.

Proposition 2. Let ū satisfy the SCC (14). Then the greedy algorithm is 1∕2-approximation for �̄.

5.2.2 The Rationalizability Gap

I claim that the rationalizability gap is unbounded if (a) ū satisfies the SCC, (b) ūn(1,… , 1) is
sublinear, and (c) 3SAT is computationally hard. For intuition, suppose we were to restrict attention
to hedonic utility functions of the following form

ū(z) = g

(

n
∑

i=1
zi

)

In this case, sublinearity roughly says that g(n) = o(n), i.e. g is growing at a sublinear rate. This is
true of most strictly concave functions g, but not all. For example, if the derivative g′(x) converges
to a constant, then g may be strictly concave but asymptotically linear.

The following theorem provides three ways of formalizing this claim based on different inter-
pretations of earlier results (theorem 1 and corollary 2).
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Theorem 3. Let ū satisfy the SCC (14). The rationalizability gap is unbounded, i.e. RGn(ū) = !(1),
if any of the following conditions hold:

1. NP ⊄ P∕poly and there exists some � > 0 such that ūn(z̄,… , z̄) = O(n1−�).

2. The non-uniform ETH holds and ūn(z̄,… , z̄) = o
(

n
log(poly(n))

)

.

3. P ≠ NP, ūn(z̄,… , z̄) = o(n), and � satisfies label-invariance (7).
The proof is deferred to the appendix. For now, I will provide a high-level sketch. First, we

already showed that if ū satisfies the single-crossing condition, the irrational greedy algorithm  
guarantees a 1∕2-approximation. Therefore, every � ∈ ΦR is weakly dominated by an tractable,
irrational alternative that guarantees at least half of the optimal SEU. This alternative is quite simple:
choose the better of �(H) and �G(H).

Next, wewant to show that if ū is sublinear, there is no � > 0 such that any rationalizable� ∈ ΦR
guarantees a constant �-approximation. LetGn be the revealed violation graph of �. By the general
representation, Had(Gn) = o(poly(n)) if NP ⊄ P/poly. This implies that Gn has a subpolynomial
chromatic number. I construct a menuH where (a)� appears to be narrowly bracketing dimensions
associated with nodes of a certain color, and (b) this causes � to severely underperform.

6 Conclusion
These results call into question the credibility of economic models that invoke exact optimization,
but they also point to new opportunities for decision theory. First, there is a need for credible and
useful definitions of approximate optimization. Extant definitions may not be ideal for characteriz-
ing human behavior. Second, high-dimensional choice is an underexplored frontier, where existing
theory can make new predictions (narrow choice bracketing), old intuitions can be overturned (the
rationalizability gap), and entirely new questions can be posed.

This draft is preliminary. Some priorities for further work include (a) allowing non-uniform
prior distributions, (b) relaxing themonotonicity of the Bernoulli utility function, (c) seeingwhether
these results can be used to motivate separable time preferences and models of discounting; (d)
seeing whether these results can be used to alleviate a curse of dimensionality when using choice
data to estimate an agent’s Bernoulli utility function; (e) showing that my theorems still hold even
if you relax tractability to the existence of a polynomial-time approximation scheme (PTAS).
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A Addendum to Section 3

A.1 Comments on Theorem 2
Remark 3. As mentioned earlier, theorem 2 is a nearly-complete characterization. Here is a com-
plete characterization, with additional assumptions. Let the choice correspondence � be rich (1,
2, 3), rational (4), and monotone (5). Furthermore, suppose one of the following:

1. The sequence (Gn,Hn) is efficiently computable and the ETH holds.

2. The sequence Gn is efficiently computable and the non-uniform ETH holds.

Then the Hadwiger numbers of the violation graphs determine whether � is tractable.

Remark 4. When a researcher proposes a utility function u in an economic model, they may wonder
whether SEU maximization is a credible assumption. Theorem 2 suggests the following procedure
for evaluating credibility. First, the researcher should describe the violation graph Gn for some
dimension n that is appropriate for their setting. Second, they should specify an efficiently com-
putable function f (n) = O(log(poly(n))). Third, decide whether Had(Gn) ≤ f (n). This can be
done in poly(n) time. If the answer to the third step is “yes”, there is evidence that a sophisticated
agent could optimize exactly. The alternative, if the answer is “no”, suggests the opposite.

Suppose the sequence Gn is efficiently computable, but not Hn.If P ≠ NP but NP ⊂ P∕poly,
the tractability result (theorem 2.3) still applies and the intractability result (theorem 2.1) can be
partially recovered (corollary 2.1). Likewise, if the ETH holds but the non-uniform ETH fails,
the tractability result (theorem 2.3) still applies and the intractability result (theorem 2.2) can be
partially recovered (corollary 2.2).
Corollary 2 (to the proof of Theorem 2). Assume richness (1, 2, 3), rationality (4), monotonicity
(5), and tractability (6). Then

1. If NP ⊈ P∕Gn, then dgn(Gn) = o(poly(n)).

2. If 3SAT ∉ DTIME
(

2o(n)
)

∕Gn, then dgn(Gn) = O(log(poly(n))).

Proof. This follows from the fact that a graph Gn of degeneracy k has a subgraph S (the k-core)
with average degree no less than k. In particular, S must have a clique minor S ′ of order

Ω
(

k∕
√

log k
)

(Kostochka 1984). Furthermore, H ′ can be found in O(poly(n)) time (Alon et al. 2007). Finally,
since S ′ is a minor of S and S is a subgraph of Gn, S ′ is also a minor of Gn. Therefore, we can
substitute the violation minor Sn with S ′ in the proof of theorem 2. As long as k grows sufficiently
quickly in n, the reduction from MAX2SAT is unaffected.
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Recall from proposition 1 that the degeneracy is bounded above (in order) by the Hadwiger
number. On the other hand, there are graph sequences Gn where the Hadwiger number increases at
a poly(n) rate but the degeneracy remains constant. Therefore, the conclusions of this corollary are
weaker than the conclusions of theorem 2. Nonetheless, the corollary is strong enough to establish
a rationalizability gap in section 5.2. It also implies theorem 1.1 and may be useful in deriving
similar results, where label-invariance is replaced with a weaker assumption.

B Omitted Proofs in Sections 3 and 4
The following observation will be useful. If a rational, monotone choice correspondence � is
tractable, then the utility function u is efficiently computable (up to affine transformations).
Proposition 3. Assume richness (1, 2, 3), rationality (4), monotonicity (5), and tractability (6).
Then u is efficiently computable in the following sense. There exists a TMM that takes in a constant
� > 0 and an n-tuple (z1,… , zn) ∈

[

z, z̄
]

, and then outputs x ∈ ℝ where

x − � ≤
un(z1,… , zn) − un

(

z,… , z
)

un (z̄,… , z̄) − un
(

z,… , z
) ≤ x + � (5)

with runtime O(poly(n, 1∕�)).

Proof. Let z = (z1,… , zn, en+1, en+2,…). Define a constant n-dimensional act ℎz where ℎz(�) = z
for all � ∈ [0, 1]. Define an regular n-dimensional act ℎx where ℎx(�) = (

z,… , z, en+1, en+2,…
)

for � ≤ x and ℎ�(�) = (

z̄,… , z̄, en+1, en+2,…
) for � > x. Let M� be the TM referred to in the

tractability axiom (6). Define
Ix = 1

(

ℎ� =M� ({ℎz, ℎx})
)

Redefine � ∶= min{�, 1}, let k = ⌊1∕�⌋, and construct a grid
X = {�, 2�,… , (k − 1)�, k�}

Iterate over all x ∈ X. Output the smallest x such that Ix = 1.

B.1 Satisfiability
Let x1,… , xn be boolean variables. Let c1,… , cm be clauses of up to n literals (i.e. xi or ¬xi). An
assignment gives a truth value to each xi. A clause is satisfied if at least one literal is true. For
example, if n = 3, c1 = (x1 ∨ x2), and c2 = (¬x1 ∨ x3), then the solution (true, true, true) satisfies
both clauses while (false, false, false) only satisfies clause c2.

If each clause is restricted to two literals, MAX2SAT requires us to find an assignment that
maximizes the number of satisfied clauses. This problem is NP-hard (Johnson 1974). Similarly, if
each clause is restricted to two literals, MIN2SAT requires us to find an assignment that minimizes
the number of satisfied clauses. This problem is also NP-hard (Kohli et al. 1994).
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B.2 Proof of Theorem 1
Assume richness (1, 2, 3), rationality (4), monotonicity (5), tractability (6), and label-invariance
(7). I want to show that if u is not additively separable, then � ∈ NP-hard.

Since u is not additively separable, it must possess an (i, j)-pairwise violation of additive sep-
arability. By label-invariance and remark 1, there is an N-dimensional consequence z and a pair
(a, b) such that

u2(a, a) + u2(b, b) ≠ u2(a, b) + u2(b, a) (6)
where we define u2 ∶ [z, z] → ℝ as follows:

u2(x, y) ∶= u
(

… , zi−1, x, zi+1,… , zj−1, y, zj+1,…
)

By label-invariance, u is not affected by rearranging the entries (x, y) and z. Therefore, this one
(i, j)-pairwise violation easily leads to (k, l)-pairwise violation for dimensions k, l. This includes
dimensions k, l > N that exceed the dimensionality of the consequence z. Likewise, the function
u2 is not affected by the choice of (k, l). We can describe z, a, b in O(N) time, evaluate u2(x, y) in
O(N) time by proposition 3, and rearrange dimensions in O(n) time. Since N is a property of u
and not affected by the dimension n of the instanceH , these operations are all tractable.

The next two lemmas describe reductions from MAX2SAT and MIN2SAT to �, respectively,
depending on the direction of inequality (6).
Lemma 1. The choice correspondence � is NP-hard if

u2(a, a) + u2(b, b) > u2(a, b) + u2(b, a) (7)
Proof. I show that if the choice correspondence �n were tractable, then we could solve MAX2SAT
in polynomial time. First, recall that the objective for MAX2SAT is

max
x1,…,xn

m
∑

j=1
1(cj = true) (8)

where
cj = (xj1 ∨ xj2) = (xj1 ∧ xj2) ∨ (¬xj1 ∧ xj2) ∨ (xj1 ∧ ¬xj2) (9)

Our goal is to construct a menuH such that, given the solution �(H), we could solve program (8)
in poly(n, m). For every clause cj , create three states j1, j2, j3 (i.e. create three isometric intervals
used to define a regular act). For every variable xi, create a dimension i. Let each submenu Hi
consist of a two acts: ℎTi , which indicates xi = true, and ℎFi , which indicates xi = false. We defer
the definition of these objects until later. For now, define a menuH = H1 ×…×Hn where an act
ℎ corresponds to an assignment x as described.
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As written, the objective for BDT is

max
ℎ∈H

m
∑

j=1

3
∑

k=1
u(ℎ1(jk),… , ℎn(jk))

Clearly, the following condition is sufficient for our purposes:
3
∑

k=1
u
(

ℎx11 (jk),… , ℎxnn (jk)
)

∝ 1
(

(xj1 ∧ xj2) ∨ (¬xj1 ∧ xj2) ∨ (xj1 ∧ ¬xj2)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1(cj = true)

(10)

assuming that the proportionality constants are the same for all clauses j, which will turn out to be
true for my construction.

Let us simplify this condition. On the left-hand side, we refer to all n variables whereas on
the right-hand side we refer only to two variables. Let z be the consequence used to define u2. As
discussed earlier, we can rearrange the consequence as needed so that the arguments (x, y) to u2(x, y)
correspond to dimensions j1, j2 of u. If xi ∉ cj and ¬xi ∉ cj , set ℎi(j1) = ℎi(j2) = ℎi(j3) = zi.
Then, we can rewrite the left-hand side as

3
∑

k=1
u2
(

ℎxj1j1 (jk), ℎ
xj2
j2 (jk)

)

At this point, we can focus on the problem where n = 2, m = 1. Without loss of generality, let
cj = (x1 ∨ x2). This will simplify our notation. The left-hand side of condition (10) becomes

u2
(

ℎx11 (1), ℎ
x2
2 (1)

)

+ u2
(

ℎx11 (2), ℎ
x2
2 (2)

)

+ u2
(

ℎx11 (3), ℎ
x2
2 (3)

) (11)
while the right-hand side becomes

1
(

(x1 ∧ x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)
) (12)

The reader may have gathered that I intend to somehow associate u (ℎx11 (1), ℎx22 (1)
) with (x1 ∧

x2), u
(

ℎx11 (2), ℎ
x2
2 (2)

) with (¬x1 ∧ x2), and u2
(

ℎx11 (3), ℎ
x2
2 (3)

) with (x1 ∧ ¬x2). Indeed, this is true.
This would be immediate if, for example, u(z1, z2) = min{z1, z2} since we could set

ℎT1 (1) = 1; ℎT1 (2) = 0; ℎT1 (3) = 1; ℎT2 (1) = 1; ℎT2 (2) = 1; ℎT2 (3) = 0

and ℎFi (k) = 1 − ℎTi (k) for all i, k. In that case, min (ℎx11 (1), ℎx22 (1)
)

= 1(x1 ∧ x2) and so forth.
Since only one of the three expressions in the disjunctive normal form (DNF) (9) can be true at one
time, the sum (11) would be one if and only if (9) were true, and zero otherwise. In other words,
(11) would equal (12) and we would be done.

The case for more general utility functions u is not quite so straightforward. Roughly, we can
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think of u as a function of two literals (e.g. (x1, x2), (¬x1, x2), (x1,¬x2)). Since u is increasing, it
will assign high utility when both variables are true and low utility when both variables are false.
However, it will also assignmedium utility when one variable is true and the other false. Essentially,
this implies a three-valued logic where “medium” corresponds to a statement that is not quite true
but also not quite false. This makes it difficult to map our problem onto MAX2SAT, which deals
with a traditional two-valued logic.

To clear this hurdle, we rely on our supermodularity condition (7) and asymmetry across the
states k = 1,… , 3. While it will not be true that u (ℎx11 (1), ℎx22 (1)

)

∝ (x1 ∧ x2), our sufficient
condition (10) will hold because it sums across these three states. Formally, define

ℎT1 (1) = c; ℎT1 (2) = a; ℎT1 (3) = b; ℎT2 (1) = c; ℎT2 (2) = b; ℎT2 (3) = a

ℎF1 (1) = a; ℎF1 (2) = b; ℎF1 (3) = a; ℎF2 (1) = a; ℎF2 (2) = a; ℎF2 (3) = b

By setting b > c > a, we devalue the satisfaction of the first expression in the DNF (9) relative to
the latter two. Now, condition (10) is true if and only if

u
(

ℎT1 (1), ℎ
T
2 (1)

)

+ u
(

ℎT1 (2), ℎ
T
2 (2)

)

+ u
(

ℎT1 (3), ℎ
T
2 (3)

)

= u(c, c) + u(a, b) + u(b, a) = B (13)
u
(

ℎT1 (1), ℎ
F
2 (1)

)

+ u
(

ℎT1 (2), ℎ
F
2 (2)

)

+ u
(

ℎT1 (3), ℎ
F
2 (3)

)

= u(c, a) + u(a, a) + u(b, b) = B (14)
u
(

ℎF1 (1), ℎ
T
2 (1)

)

+ u
(

ℎF1 (2), ℎ
T
2 (2)

)

+ u
(

ℎF1 (3), ℎ
T
2 (3)

)

= u(a, c) + u(b, b) + u(a, a) = B (15)
u
(

ℎF1 (1), ℎ
F
2 (1)

)

+ u
(

ℎF1 (2), ℎ
F
2 (2)

)

+ u
(

ℎF1 (3), ℎ
F
2 (3)

)

= u(a, a) + u(b, a) + u(a, b) = A (16)
for some B > A. This is because the first three choices make the DNF (9) true, which demands a
high value B, and the last one makes it false, which demands a low value A.

Conditions (14) and (15) are equivalent since u is symmetric across dimensions. Conditions
(13) and (14) hold if and only if  (c) = 0 where

 (z) = u(z, z) − u(z, a) − u(a, a) − u(b, b) + 2u(a, b)

Note that  (a) < 0 and  (b) ≥ 0 by assumption (7). Since u is continuous, it follows from the
intermediate value theorem that there exists c ∈ (a, b] such that  (c) = 0. Finally, the fact that
A < B follows from

u(a, a) + u(b, a) + u(a, b) < u(c, c) + u(a, b) + u(b, a) ⟺ u(a, a) < u(c, c)

which is true since c > a and u is strictly increasing along the diagonal. This completes the reduc-
tion, since the consequences ℎi(j) can be defined similarly for other variables and states. Moreover,
defining the menuH only requires us to define O(nm) such consequences.

Notice that c depends on u2 but not on any other aspect of the problem, including n, m, or the
clauses c1,… , cm. This proof is non-constructive in the sense that I only prove the existence of a
polynomial-time reduction (parameterized by c) from MAX2SAT to BDT, but do not provide an
algorithm to find c itself. But whether c is easy or hard to compute is irrelevant for our purposes,
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so long as it does not need to be re-computed for different inputs to MAX2SAT.
Lemma 2. The choice correspondence � is NP-hard if

u2(a, a) + u2(b, b) < u2(a, b) + u2(b, a) (17)
Proof. I show that if the choice correspondence �n were tractable, then we could solve MIN2SAT
in polynomial time. First, recall that the objective for MIN2SAT is

max
x1,…,xn

m
∑

j=1
1(cj = false) (18)

Our goal is to construct a menuH such that, given the solution �(H), we could solve program (18)
in poly(n, m) time. My approach will be almost identical to the proof of lemma 1, so I skip ahead
to the point of divergence.

Here, I define acts similarly to the previous lemma. However, because our objective is to mini-
mize rather than maximize the number of satisfied clauses, we give false literals a high utility and
true literals a low utility. Formally, define

ℎT1 (1) = a; ℎT1 (2) = b; ℎT1 (3) = a; ℎT2 (1) = a; ℎT2 (2) = a; ℎT2 (3) = b

ℎF1 (1) = c; ℎF1 (2) = a; ℎF1 (3) = b; ℎF2 (1) = c; ℎF2 (2) = b; ℎF2 (3) = a

Now, our (negatively proportional) analog to condition (10) is true if and only if
u
(

ℎT1 (1), ℎ
T
2 (1)

)

+ u
(

ℎT1 (2), ℎ
T
2 (2)

)

+ u
(

ℎT1 (3), ℎ
T
2 (3)

)

= u(a, a) + u(b, a) + u(a, b) = A (19)
u
(

ℎT1 (1), ℎ
F
2 (1)

)

+ u
(

ℎT1 (2), ℎ
F
2 (2)

)

+ u
(

ℎT1 (3), ℎ
F
2 (3)

)

= u(a, c) + u(b, b) + u(a, a) = A (20)
u
(

ℎF1 (1), ℎ
T
2 (1)

)

+ u
(

ℎF1 (2), ℎ
T
2 (2)

)

+ u
(

ℎF1 (3), ℎ
T
2 (3)

)

= u(c, a) + u(a, a) + u(b, b) = A (21)
u
(

ℎF1 (1), ℎ
F
2 (1)

)

+ u
(

ℎF1 (2), ℎ
F
2 (2)

)

+ u
(

ℎF1 (3), ℎ
F
2 (3)

)

= u(c, c) + u(a, b) + u(b, a) = B (22)
for some B > A. This is because the first three choices make the DNF (9) true, which demands a
low value A, and the last one makes it false, which demands a high value B.

Conditions (20) and (21) are equivalent since u is symmetric across dimensions. Conditions
(19) and (20) hold if and only if  (c) = 0 where

 (z) = 2u(b, a) − u(b, b) − u(a, a) + u(a, a) − u(a, z)

Note that  (a) = 2u(b, a)−u(b, b)−u(a, a) > 0 and (b) = u(b, a)−u(b, b) ≤ 0 by assumption (17).
Since u is continuous, it follows from the intermediate value theorem that there exists c ∈ (a, b]
such that  (c) = 0. Finally, the fact that B > A follows from

u(c, c) + u(a, b) + u(b, a) > u(a, a) + u(b, a) + u(a, b) ⟺ u(c, c) > u(a, a)
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which is true since c > a and u is strictly increasing along the diagonal. This completes the reduc-
tion, for the same reasons as in the previous lemma.

B.3 Proof of Theorem 2
B.3.1 Hardness

Assume richness (1, 2, 3), rationality (4), and monotonicity (5). Given the violation minor Sn of
order k as advice, I want to show that an efficient algorithm for � can be used to solve MAX2SAT
with k variables in O(poly(n)) time.

1. If k = Ω(poly(n)), this is a polynomial-time algorithm for MAX2SAT.
2. If k = !(log(poly(n))), this is a subexponential-time algorithm for MAX2SAT. There is

a well-known polynomial-time reduction from 3SAT with n′ variables and m′ clauses to
MAX2SAT with n′ + m′ variables and 10m′ clauses. The description length of the 3SAT
instance isΘ(n′)+Θ(m′), which is the same order as the description length of the MAX2SAT
instance. So, a subexponential-time algorithm for MAX2SAT implies the same for 3SAT.

Consider a boolean formula with k variables x1,… , xk, i.e. an instance of MAX2SAT. I will
refer to this as the original formula. This terminology is meant to contrast with an auxilliary formula
with variables y1,… , yn that will describe an instance of weighted MAX2SAT. As we will see, the
auxilliary problem is constructed in a way that its solution corresponds to the solution of the original
problem. Then, we will reduce the auxilliary problem to SEU maximization.

Suppose dimensions d1,… , dl, corresponding to nodes of Gn, be combined via edge contrac-
tions in the contracted node d of Sn. In the auxilliary problem, we wish to impose the constraint
ydi = ydj for all i, j = 1,… , l. This allows us to treat the contracted node d as a single variable in
the original formula, where any dimension di can represent the variable d. This is useful because,
for a given dimension j, some dimensions in d may share a pairwise violation (i.e. an edge in Gn)
with j, but not others.

Fortunately, it is possible to impose the constraint x = y by adding clauses x ∨ ¬y and ¬x ∨ y
to the auxilliary instance, with weight exceeding twice the total weight of all other clauses where
x, y are represented (excepting other clauses representing equality constraints). The reason is that
setting x = y, regardless of whether the value is true or false, will make both of these clauses true.
In contrast, setting x ≠ y will make one of these clauses false. Given the weights, no benefit from
setting x ≠ y that comes from other clauses can outweigh this advantage.

Since Sn is a complete graph, every contracted node d is adjacent to every other contracted
node d′. To represent a clause x ∨ y in the original formula, it suffices to choose some node in d
representing x and some node in d′ representing y. These nodes, corresponding to dimensions of
u, must have a pairwise violation in order for the reduction to work. Equivalently, they must share
an edge in Gn. Of course, it is always possible to find such a pair. If no such pair existed, there
would be no sequence of edge contractions in Gn that would make d adjacent to d′.
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Having described the auxilliary problem, it remains to construct a menu such that SEU maxi-
mization corresponds to solving weighted MAXSAT. Essentially, we want to recreate the argument
that we used in lemmas 1 and 2. There, we observed that the following condition (10)

3
∑

l=1
u
(

ℎy11 (jl),… , ℎynn (jl)
)

∝ 1
(

(yj1 ∧ yj2) ∨ (¬yj1 ∧ yj2) ∨ (yj1 ∧ ¬yj2)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1(cj = true)

is nearly sufficient for SEU with submenusHi = {ℎTi , ℎ
F
i } to correspond to an optimal assignment

inMAX2SAT. The qualifier “nearly” reflects the fact that we also need the proportionality constants
to be the same across all clauses yj1∨yj2. In the case of weightedMAXSAT, these constants should
reflect the weight of that clause.

Consider a clause yi ∨ yj . As in the proof of theorem 1, let (z, a0, b0, a1, b1) constitute an (i, j)-
pairwise violation of additive separability, and define

u2(a, b) ∶= u
(

… , zi−1, a, zi+1,… , zj−1, b, zj+1,…
)

However, without label invariance, u2 is not the same across all dimensions i, j. For this reason,
we need each (i, j)-pairwise violation to be included in the description of Sn, which we take as
advice. This description takes O(n3) space. In any case, we are focusing on a single clause, so I
will suppress the dependence on i, j. As before (see lemma 1), we construct acts so that condition
(10) can be rewritten in terms of only two variables, i.e.

3
∑

l=1
u2
(

ℎyl1 (l), ℎ
yl
2 (l)

)

∝ 1
(

(y1 ∧ y2) ∨ (¬y1 ∧ y2) ∨ (y1 ∧ ¬y2)
) (23)

As before, there are two cases to consider, based on the direction of the (i, j)-pairwise violation. We
consider each in turn. The next two observations will imply that we can satisfy the above condition,
and then we complete the definition of subacts ℎTi , ℎFi in the same way as theorem 1.

Assume without loss of generality that b1 > a1 and b0 > a0. Suppose that
u2(b0, a1) + u2(a0, b1) < u2(b0, b1) + u2(a0, a1) (24)

I claim that there exist constants B > A and weights � ∈ Δ{1, 2, 3} such that
�1u

2(b0, b1) + �2u2(b0, a1) + �3u2(a0, b1) = B (25)
�1u

2(b0, a1) + �2u2(b0, b1) + �3u2(a0, a1) = B (26)
�1u

2(a0, b1) + �2u2(a0, a1) + �3u2(b0, b1) = B (27)
�1u

2(a0, a1) + �2u2(a0, b1) + �3u2(b0, a1) = A (28)
To see this, note that (25) exceeds (28) by the fact that u2 is strictly increasing (inherited from
monotonicity of u). Therefore, we only need to satisfy the first three equations. The fact that a
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strictly positive solution exists follows from (24).
These weights � represent the likelihood of the underlying states. Recall that the effective state

corresponds to a subinterval of Θ = [0, 1] on which the acts ℎ ∈ H are constant. Consider the
subintervals corresponding to the three states associated with clause y1∨y2. These three subinterval
should have length proportional to

�1
�1 + �2 + �3

Next, consider the case
u2(b0, a1) + u2(a0, b1) > u2(b0, b1) + u2(a0, a1) (29)

The previous observation no longer holds, since a solution � is not guaranteed to exist. On the other
hand, there do exist constants B > A and weights � ∈ Δ{1, 2, 3} such that

�1u
2(b0, b1) + �2u2(b0, a1) + �3u2(a0, b1) = A (30)

�1u
2(b0, a1) + �2u2(b0, b1) + �3u2(a0, a1) = A (31)

�1u
2(a0, b1) + �2u2(a0, a1) + �3u2(b0, b1) = A (32)

�1u
2(a0, a1) + �2u2(a0, b1) + �3u2(b0, a1) = B (33)

We used a similar observation in lemma 2 to obtain a reduction from MIN2SAT. Unfortunately,
without label-invariance, u2 depends on the dimension pair i, j; condition (29) may apply to some
pairs while condition (24) applies to other pairs. So, we need to stick with MAX2SAT.

A straightforward way to handle this case is to modify the auxilliary formula. Replace the
original clause y1 ∨ y2 with three new clauses: ¬y1 ∨ ¬y2, ¬y1 ∨ y2, and y1 ∨ ¬y2. The original
clause is satisfied iff only two of the new clauses are satisfied. It is falsified iff all three of the new
clauses are satisfied. So, instead of trying to satisfy the original clause, we can aim to falsify as
many of the new clauses as possible. The way to interpret equations (30) through (33) is that, with
effective states that are proportional to �, SEU conditioned on those states is proportional to the
falsification of a clause. This is exactly what we need.

At this point, our construction satisfies (23). The only remaining issue is that, unlike in the
proof of theorem 1, the proportionality constants will differ from clause to clause. Furthermore,
some of the clauses are weighted. This can be handled in a straightforward way by manipulating
the intervals used to define the effective state space. Suppose a clause receives weight w and the
difference between its satisfied value and its unsatisfied value is Δ. Then the three effective states
associated with said clause should have interval length proportional tow∕Δ. Integrating over states
in the sense of SEU gives precisely the objective function of weighted MAX2SAT, so � gives a
solution to the auxilliary problem.
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B.3.2 Tractability

Definition 15 (DP Algorithm). Specify a utility function u and a graph G = (V ,E) of order n and
contraction degeneracy k. Given an n-dimensional product menu H , the dynamic programming
(DP) algorithm proceeds as follows:

1. Construct a directed acyclic graph G̃ = (V , Ẽ) where each node has out-degree at most k.

2. Perform a topological sort of G̃. In particular, nodes are numbered, i.e. V = {1,… , n}, and
if i < j then there is no path in G̃ from node j to node i.

3. Initialize the act ℎ̃ by setting ℎ̃i(�) = z for all dimensions i and states �.

4. Let i be the smallest node in G̃. Initialize the frontier F ⊆ V as ∅.

(a) Let Si consist of i’s successor nodes j, i.e. where (i, j) ∈ Ẽ. Let Fi be the set of nodes
j ∈ F for which, in the undirected graph G, there exists a path from i to j that does not
pass through F . I will refer to the pair (i, j) as (G ⧵ F )-connected.

i. If |Fi| > k, return to step (4a) with i ∶= i + 1.
ii. Else let Li =

∏

j∈Fi∪Si
Hi be a set of partially-specified acts ℎFi∪Si .

(b) Initialize the act ℎ̃ by setting ℎ̃i(�) = z for all dimensions i and states �.
item In this step, we construct a function fi ∶ Li → Hi where

fi
(

ℎFi∪Si
)

∈ arg max
ℎi∈Hi ∫

1

0
u
(

ℎi(x), ℎ̂−i(x)
)

dx

To define it, iterate over all ℎFi∪Si ∈ Li.

i. Initialize the act ℎ̂ = ℎ̃ but set ℎ̂Fi∪Si(x) = ℎFi∪Si(x).
ii. Iterate through j ∉ Fi ∪ Si ∪ {i}.

A. If j > i then ℎ̂j(�) = z for all states �.
B. Else if i, j are not (G ⧵ F )-connected, set ℎ̂j(�) = z for all �.
C. Else proceed as follows. Because i ≤ j and j ∉ Fi, we have already con-

structed fj . Assume that fj is up-to-date, in that it only depends on subacts ℎl
for dimensions l ∈ Fi ∪ {i}. Define ℎ̂j = fj

(

ℎFi
)

.

(c) If Fi ∪ Si = ∅, set ℎ̃i = fi(∅).

(d) Iterate through j ∉ Fi ∪ Si ∪ {i}.

i. If j > i, do nothing.
ii. Else if i, j are not (G ⧵ F )-connected, do nothing.
iii. Else update fj as follows. Currently, fj is a function of ℎ′i and ℎ

′
Fi
. Replace the

argument ℎ′i with fi
(

ℎ′Si , ℎ
′
Fi

)

. Now, reconstruct fj as a function of ℎ′Si∪Fi . More-
over, if Fi ∪ Si = ∅, set ℎ̃j = fj(∅).
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(e) Redefine F with node i deleted and nodes Si added. Redefine G̃ with node i deleted. If
any nodes remain, repeat step (3).

5. Return act ℎ̃, which belongs to the menuH by construction.

The following is a fixed-parameter tractability result that combines usefullywith the log-polynomial
rates established in theorem 2.
Proposition 4. Given an n-dimensional product menu with submenus of size l and an effective
state space of size m, the DP algorithm parameterized by graph G will halt in O(poly(n, m, lk))
time, where k is the contraction degeneracy of G.

Proof. Most of these steps are obviously polynomial in n, k, l or involve iterating over sets of size
lk. Here, I will justify the less obvious steps and assumptions. The key observation is the third one.

1. Step 1 takes O(poly(n)) time since G has degeneracy k. The algorithm is simple: find a node
i with degree ≤ k, orient all the edges outwards. In the subgraph without i, repeat.

2. Step 4 will halt in O(n2) steps. Whenever step 4.e is reached, the number of nodes in G̃
decreases by one, so this can be reached at most n times. The only other possibility is that
step 4.a.i is reached, but this can happen at most n consecutive times before it fails.

3. Step 4.a.i will never fail. This is due to the following observation. Consider the minor S
of graph G with all edges contracted except for those connecting two nodes i, j ∈ F . Then
there is an edge between i and j if and only if they are adjacent in G or if there is a path from
i to j that does not go through F . Note that S has a node of degree less than or equal to k,
by the definition of contraction degeneracy. This node contains some j ∈ F . Step 4.a.i will
eventually reach this j and move on to step 4.a.ii.

4. Step 4.b.ii.C assumes that the function fj is up-to-date. This is guaranteed by step 4.d, which
updates any function fj that may have been affected by changes in iteration i of step 4.

5. Step 5 assumes that ℎ̃ belongs to the menuH . This follows from the fact that F = ∅ by the
time step 4 terminates. Since step 4.d ensures that functions are up-to-date, every function fj
must have reached a point where its argument is vacuous. At that point, ℎ̃j would have been
defined in steps 4.c or 4.d.iii.

B.4 Proof of Proposition 1
These rankings are well-known except for (possibly) the last one, which I now prove.
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1. cdgn(G) ⪯ Had(G). There exists a minor H with minimal degree k = cdgn(G). Further-
more, avg(H) ≥ �(H) = k. Kostochka (1984) proved that G has a clique minor of order

Ω
(

avg(H)∕
√

log avg(H)
)

Therefore, Had(G) is at least proportional to k, up to log factors.
2. cdgn(G) ⪰ Had(G). There is a minor clique H of order k = Had(G). It is complete, so
�(H) = k. Therefore, cdgn(G) ≥ �(H) = k.

C Omitted Proofs in Section 5.2

C.1 Proof of Theorem 3
Let � ∈ ΦR have revealed utility function u and violation graph Gn. Let k = 1 + dgn(Gn). I will
argue that if ūn(z̄,… , z̄) = o(n∕k), then �’s approximation ratio is o(1), i.e. it is bounded above by
a term that is approaching zero. In contrast, the greedy algorithm obtains a 1/2-approximation by
proposition 2. Therefore, the ratio of the approximation ratios is !(1), i.e. it is bounded below by
a term that is approaching infinity. The three assertions of theorem 3 follow immediately, since:

1. By corollary 2.1, if NP ⊄ P∕poly, then k = o(poly(n)).
2. By corollary 2.2, if the non-uniform ETH holds, then k = O(log(poly(n))).
3. By theorem 1, if P ≠ NP and � satisfies label-invariance (7), then k = 1.

To prove this, I construct a menu H where � obtains a vanishingly small fraction of the optimal
SEU. In doing so, I use one additional concept from graph theory.
Definition 16 (Chromatic Number). Let C be a set of colors. Let G = (V ,E) be a graph. A C-
coloring of G is an assignment f ∶ V → C of nodes i ∈ V to colors c ∈ C where adjacent nodes
have different colors, i.e. (i, j) ∈ E implies f (i) ≠ f (j). The chromatic number of G is the size of
the smallest set C such that a C-coloring exists.

The chromatic number of Gn is at most k. This follows from the fact that a graph G = (V ,E)
of degeneracy d can be colored with d + 1 colors (Szekeres and Wilf 1968). Let C = {1,… , k}
and suppose we color Gn with C . Choose the color c ∈ C with the most nodes, a number that must
be at least n∕k. Let Vc denote the set of c-colored nodes.

Next, I construct a product menuH . For all dimensions i ∉ Vc, setHi = {ℎi} where ℎi(�) = ei
for all states �. For all dimensions i ∈ Vc , set Hi = {ℎTi , ℎ

F
i }. Consider an evenly-spaced grid

X = {0, x1,… , xk+1, 1} on [0, 1]. Let ℎT (�) = z̄ if � ≥ xk and ℎT (�) = z otherwise. Let ℎT (�) = z̄
if � ∈ [xi−1, xi] and ℎT (�) = z otherwise.

Note that the consequences zi for i ∉ Vc are fixed. Moreover, as a function of zi for i ∈ Vc, u
is additively separable. This follows from the fact that two nodes i, j with the same color c cannot
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be adjacent in the violation graph. As a consequence, the agent will always choose ℎTi over ℎFi .After all, the former obtains the high value z̄ over two effective states (i.e. an interval of length
2∕(k + 1)) and z otherwise. Whereas the latter obtains the high value z̄ only in one effective state
(i.e. an interval of length 1∕(k + 1)). Essentially, we have constructed a menu in which the agent
will narrowly choice bracket, myopically seeking the highest value in each dimension.

Unfortunately, from the perspective of ū, always choosing ℎTi can be a poor strategy, roughly
due to satiation effects. This strategy will obtain z̄ in every dimension but only for two effective
states, for a SEU of

|Vc| − 2
|Vc|

⋅ ū
(

z,… , z
)

+ 2
|Vc|

ū (z̄,… , z̄)

In contrast, always choosing ℎFi guarantees z̄ in one dimension for every state, for a SEU of
|Vc| ⋅ ū

(

z̄, z,… , z
)

Recall that |Vc| ≥ n∕k. The latter SEU is increasing linearly in |Vc|, while the former SEU is
increasing sublinearly, assuming ū (z̄,… , z̄) = o(n∕k). This is what I sought to show.

C.2 Proof of Proposition 2
Let �G be the choice correspondence associated with the greedy algorithm. Given a product menu
H ∈ , let ℎ̂ = �G(H). For each dimension i and state x, define
Δi(x) = ūn

(

ℎ̂1(x),… , ℎ̂i(x), z,… , z
)

− ūn
(

ℎ̂1(x),… , ℎ̂i−1(x), z,… , z
)

≥ ūn
(

ℎ̂1(x),… , ℎi(x), z,… , z
)

− ūn
(

ℎ̂1(x),… , ℎ̂i−1(x), z,… , z
)

≥ ūn
(

ℎ̂1(x),… , ℎ̂i−1(x), ℎi(x),… , ℎn(x)
)

− ūn
(

ℎ̂1(x),… , ℎ̂i−1(x), z, ℎi+1(x),… , ℎn(x)
)

≥ ūn
(

ℎ̂1(x),… , ℎ̂i−1(x), ℎi(x),… , ℎn(x)
)

− ūn
(

ℎ̂1(x),… , ℎ̂i(x), ℎi+1(x),… , ℎn(x)
) (34)

where the first inequality follows from the the greedy hypothesis, the second follows from the SCC
with

z′′ = (0,… , 0, ℎ̂i+1(x) − z,… , ℎ̂n(x) − z)

and the third follows from monotonicity. Define

Δi = ∫

1

0
Δi(x)dx

This can be interpreted as the added value from choosing ℎ̂i, as evaluated by the greedy algorithm
at step i. We want to compare this to the added value from choosing ℎ̂i, having commited to the
greedy choices in dimensions 1,… , i − 1, but otherwise choosing optimally. Define

OPTi = max
ℎi,…,ℎn ∫

1

0
ūn
(

ℎ̂1(x),… , ℎ̂i−1(x), ℎi(x),… , ℎn(x)
)

dx
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It follows from inequality (34) that

OPTi ≤ OPTi+1 + Δi and OPT1 ≤ OPTn+1 +
n
∑

i=1
Δi

Observe thatOPT1 is the true optimum, obtained by �̄. WhereasOPTn+1 is the payoff of the greedy
algorithm. It is easy to see that the greedy algorithm obtains SEU ∑n

i=1Δi. Therefore, �G is a 1∕2-
approximation to �̄.
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