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Abstract

If people !nd it costly to evaluate the options available to them, their choices
may not directly reveal their preferences. Yet, it is conceivable that a researcher
can still learn about a population’s preferences with careful experiment design.
We formalize the researcher’s problem in a model of robust mechanism design
where it is costly for individuals to learn about how much they value a product.
We characterize the statistics that the researcher can identify, and !nd that they
are quite restricted. Finally, we apply our positive results to social choice and
propose a way to combat uninformed voting.
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1 Introduction

People often !nd it costly to process information about the goods they consume, the
services they receive, and the policies that a"ect them. As a result, their choices may
not directly reveal the preferences they would have had if they had processed all the
information available to them. To what extent can researchers still learn about a
population’s preferences through careful experiment design?

Learning about a population’s preferences – i.e., their informed preferences – is
important for a number of applications. For example, take market research. Suppose
that OpenAI is about to launch a product called GPT-5 and wants to forecast demand.
In the present, consumers do not know how much value they would get from GPT-5,
and !nd it costly to test the product. In the future, consumers become better informed
(as subscribers gain !rst-hand experience and others rely on second-hand experience).
Can we design an experiment that helps OpenAI forecast future demand?

We formalize the researcher’s problem as robust mechanism design with
information acquisition. There is a sample of agents, and they do not necessarily
know their values from some product. The researcher wants to learn about these
values, but does not know their distribution, including whether and how they are
correlated across agents. Agents can learn about their own and potentially about
others’ values by acquiring costly signals. We impose little structure on the
information acquisition technology, but we always assume that agents can learn their
own values at some !nite cost.

We use this model to tightly characterize what researchers can learn about the
population’s preferences. The researcher is able to design any experiment that he
wishes, recruit as many agents as he wishes, and spend as much money as he wishes.
He strongly elicits a given statistic (i.e., moment) of the population’s values if, for every
equilibrium, the agents’ choices in the experiment identify that statistic. He weakly
elicits that statistic if (i) there is an equilibrium that identi!es the statistic and (ii)
there is no equilibrium where the researcher’s estimate is worse than if the agents had
not acquired any information at all.

It turns out that what the researcher can learn is quite limited. Theorem 1 says
that a statistic is strongly elicitable if and only it is constant. That is, the statistic must
take on the same value in all cases. Theorem 2 says that a statistic is weakly elicitable
if and only if it is a#ne. That is, the statistic must be equivalent to the population’s
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average value (up to a#ne transformation). Without additional assumptions, many
basic statistics – like quantity demanded by an informed population – are not revealed
by choices, no matter how carefully-designed those choices are.

We illustrate the value of our positive results in an application to social choice.
Speci!cally, consider the problem of uninformed voting. Empirical evidence suggests
many voters are poorly informed (e.g., Delli Carpini and Keeter 1996, Angelucci and
Prat 2024) and would vote di"erently if they were better informed (e.g., Bartels 1996,
Fowler and Margolis 2014). Building on our previous results, we design a mechanism
that incentivizes voters to become better informed. This mechanism obtains nearly
!rst-best welfare in favorable equilibria, and provides meaningful guarantees even in
unfavorable equilibria (Theorem 3).

We now discuss the model and results in more detail.

Model. We formalize the researcher’s problem as robust mechanism design with
information acquisition.

The researcher asks a random sample of 𝜔 agents to participate in a mechanism.
There is a product and each agent 𝜀 derives value 𝜗𝜀 from that product. The
distribution of values in the population may feature complex patterns of heterogeneity
and correlation. The researcher does not know this distribution. He commits to a
prior-independent mechanism (e.g., Devanur et al. 2011) where the agents send
messages to the researcher and then receive individualized allocations and transfers.

Initially, agents do not know their own values. Instead, each agent 𝜀 has some
private information and may learn more – both about her own value 𝜗𝜀 and perhaps
about others’ values 𝜗ω𝜀 – by acquiring costly signals. We assume that each agent can
learn her value 𝜗𝜀 at some !nite cost. Agents may also have access to additional, more
complex signals that are unknown to the researcher

The researcher wants to learn about the distribution of values in the population.
More precisely, he wants to learn about demand for the product in the counterfactual
where every agent 𝜀 knew her value 𝜗𝜀. We focus on statistics that can be represented
as moments (e.g., average willingness to pay, or quantity demanded at a !xed price).
To learn about a statistic, the researcher can recruit as many agents as he likes, spend
as much money as he likes, and allocate as many products as he likes.

A statistic is strongly elicitable if there exists a mechanism where the observed
choices identify that statistic in every equilibrium. More precisely, there exists a
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sequence of mechanisms, indexed by the sample size 𝜔, where messages sent in
equilibrium pin down the statistic’s value in the limit as 𝜔 →ε. This must hold for
any value distribution and every Bayes-Nash equilibrium, and requires exact (not just
partial) identi!cation.

A statistic is weakly elicitable if there exists a mechanism where (i) the observed
choices identify that statistic in the researcher’s preferred equilibrium and (ii) the
researcher’s estimate is not unreasonably bad in any equilibrium. By “not
unreasonably bad”, we mean that the researcher’s estimate should not be worse than
in a counterfactual where agents did not acquire any information at all.

Next, we completely characterize the set of elicitable statistics.

Strong Elicitation. It turns out that any non-trivial statistic is not strongly
elicitable. More precisely, Theorem 1 says that a strongly elicitable statistic must take
on the same value regardless of the distribution.

To overturn this negative result, the researcher would have to impose stronger
assumptions or give up on exact identi!cation, neither of which is needed in classical
models of preference elicitation (e.g., Becker et al. 1964; Clarke 1971). However, we
!nd that the result is robust to imposing certain assumptions. It remains true even if
we restrict attention to basic instances where information acquisition is binary and a
fraction of the population is intrinsically well-informed.

Weak Elicitation. Since strong elicitation is generally impossible, we turn to weak
elicitation. Our results in this case are more positive, but only slightly.

Theorem 2 says that a statistic is weakly elicitable if and only if it is equivalent to
the population’s average value (up to a#ne transformation). This implies that many
natural and economically-relevant statistics are not even weakly elicitable. In our
motivating example, it means that OpenAI would not be able to forecast the quantity
demanded at a given price.

To weakly elicit the average, the researcher presents agents with an incentivized
survey and asks them, before completing the survey, to predict the survey results. We
call this mechanism BDM-with-betting. It has two stages. In the second stage, agents
report their willingness to pay in a standard Becker–DeGroot–Marschak (BDM)
mechanism. In the !rst stage, agents predict the average reported willingness to pay.
Prediction accuracy is rewarded according to a proper scoring rule, and the researcher
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uses the average reported value to estimate the population’s average value.
The BDM-with-betting mechanism is relatively simple – even naive – and this

begs the question: why does it work? It is simpler than than other mechanisms with
comparable features (e.g., Crémer and McLean 1985; Miller et al. 2005). It is naive
because it incentivizes agent 𝜀 to learn about others’ willingness to pay, not her own
value 𝜗𝜀. Nonetheless, BDM-with-betting works because it incentivizes agents to
acquire information up until the point where their reporting errors are uncorrelated.
If these errors – the di"erence between an agent’s value and her reported value – are
uncorrelated, they vanish in the aggregate. Essentially, betting restores the “wisdom
of the crowd”, which usually requires strong distributional assumptions.

All in all, our results suggest that what the researcher can learn is quite limited.
However, there is a setting where learning the population’s average value is all that is
needed. That setting is social choice.

Application to Social Choice. We turn to the problem of social choice, where a
planner chooses one of two alternatives on behalf of a population. He forms a
committee consisting of 𝜔 agents sampled from the population (e.g., a citizen’s
assembly). As before, we consider an optimistic case where the planner can spend as
much money and recruit as many agents as he likes.

We are motivated by the problem of uninformed voting. Existing electoral
systems do not give voters much of a reason to become informed about the policies
and candidates that appear on their ballot. This is not just a theoretical concern.
Empirically, many voters are poorly informed (e.g., Delli Carpini and Keeter 1996,
Angelucci and Prat 2024), and making them better-informed could plausibly a"ect
vote margins (e.g., Lau and Redlawsk 1997, Fowler and Margolis 2014).

It turns out that the methods we developed to elicit preferences can be used to
design social choice mechanisms that are robust to costly information processing.
Theorem 3 !nds mechanisms that are (i) e#cient in favorable equilibria and, for any
equilibria, (ii) do no worse in than simply choosing the ex-ante optimal alternative.
By comparison, standard voting procedures do not even guarantee (ii) in favorable
equilibria (see e.g., Ali et al. 2025).

Under a strong simplifying assumption, we can motivate a mechanism –
majority-rule-with-betting – that is particularly simple. There are two stages. In the
second stage, agents report their preferred alternative. In the !rst stage, they predict
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the vote margin. The planner chooses the alternative with majority support.1

Transfers are only used to reward accurate predictions; there is no vote buying.
There are two key reasons why this mechanism works. The !rst reason is the

same as before: betting restores the “wisdom of the crowd”, assuming truthful voting.
The second reason is new. It is well-known that uninformed voters may not vote
truthfully if they believe that how others vote may be informative about their own
preferences (e.g., Austen-Smith and Banks 1996). It turns out that betting restores
incentives for truth-telling. Intuitively, an uninformed agent 𝜀 that believes her value
𝜗𝜀 is correlated with the vote margin is leaving money on the table. If the betting stakes
are large, she prefers to learn her value 𝜗𝜀 in order to better predict the vote margin.

Related Literature. We build on several research areas. We brie$y highlight our
contributions now, and leave a fuller discussion to Section 6.

First, we contribute to research on preference elicitation (e.g., Becker et al. 1964;
Clarke 1971) by relaxing the assumption that individuals know their own preferences.
We identify sharp limits on our ability to learn about preferences through observed
choices. Moreover, BDM-with-betting follows a line of work on eliciting private
information that (implicitly) asks agents to bet on each others’ reports. Most existing
work uses betting to incentivize information revelation (e.g., Crémer and McLean
1985; Prelec 2004; Miller et al. 2005; Pakzad-Hurson 2022). BDM-with-betting, in
contrast, only uses betting to incentivize information acquisition.

Second, we contribute to research on mechanism design with information
acquisition (e.g., Persico 2000; Bergemann and Välimäki 2002). We propose a model
of unstructured information acquisition that builds on and complements prior work
(e.g., Carroll 2015; Carroll 2019; Denti and Ravid 2024). We !nd mechanisms that are
robust to the details of how agents acquire information.

Third, we contribute to the theory of voting, and social choice more broadly.
Historically, this literature has focused on mitigating the negative e"ects of strategic
voting (e.g., Arrow 1950; Groves and Ledyard 1977). We contribute to more recent
research on mitigating the negative e"ects of uninformed voting (e.g., Persico 2004;
Feddersen and Sandroni 2006; Gerardi and Yariv 2008; Gershkov and Szentes 2009),
largely by relaxing restrictive assumptions (e.g., common values). We also propose a
mechanism that alleviates the swing voter’s curse (e.g., Feddersen and Pesendorfer

1More precisely, the planner chooses this alternative with high probability. See Section 5.3 for details.
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1996; Jaehoon Kim and Fey 2007) when information is endogenous.

Organization. The rest of this paper is organized as follows. Section 2 presents the
model. Section 3 characterizes strongly elicitable statistics. Section 4 characterizes
weakly elicitable statistics. Section 5 applies our results to social choice. Section 6
discusses the related literature. Section 7 concludes. Appendix A outlines the proofs
of our main results, and the Supplemental Appendix !lls the gaps in the outlines.

2 Model

We develop a model of robust mechanism design with information acquisition. This
model accommodates the wide range of experiments that researchers might run.

In the model, there is a researcher and 𝜔 agents. Agent 𝜀 receives an alternative

𝜛𝜀 ϑ ∱ = {0, 1}

Given alternative 𝜛𝜀, agent 𝜀 receives value

𝜗𝜀𝜛𝜀 ϑ ∲ 𝜚 [ω𝜗𝜍, 𝜗𝜑] 𝜚 ℝ

where we normalize 𝜗𝜀0 = 0 and let 𝜗𝜀 refer to 𝜗𝜀1. We assume that ∲ is !nite. We often
refer to alternative 𝜛 = 1 as a product and 𝜛 = 0 as an outside option.

As a running example, suppose the !rm OpenAI develops a new product called
GPT-5. The outside option is an existing product called GPT-4, and each consumer 𝜀’s
value 𝜗𝜀 captures how much she would bene!t from upgrading GPT-4 to GPT-5.
Before GPT-5 is launched, the consumer does not know her value 𝜗𝜀, because she does
not know enough about the new product’s functionalities, use cases, $aws, etc.

Natually, an uninformed consumer’s willingness to pay for GPT-5 may di"er
from her value 𝜗𝜀. Although OpenAI ultimately cares about willingness to pay, it is
likely to converge to the value 𝜗𝜀 in the long-run. Consumers that do not value a
product are unlikely to buy it again or renew their subscription. Even a !rst-time
customer is likely to become better-informed in the years after a product launch, as
early adopters and professional critics share their experiences.

Next, we turn to agents’ information about their own and each others’
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preferences, and the process by which they acquire more information.

2.1 Information Acquisition

We formalize the agents’ information and information acquisition in an unstructured
way. In particular, we aim to accommodate the complicated patterns of heterogeneity
and correlation that are likely to arise in practice.

We begin by brie$y summarizing the model. Initially, agent 𝜀 does not know
much about her own value 𝜗𝜀. She understands that it is drawn from a distribution
that belongs to family of distributions parameterized by a hidden state 𝛻, and she
shares a common prior over the state 𝛻 with the other agents 𝜕 ∳ 𝜀. She can learn
more by making use of an information acquisition technology ℵ𝜀, which determines the
cost of di"erent signals ℶ𝜀. In turn, signals ℶ𝜀 may tell her something about her own
value 𝜗𝜀, or about the distribution ℷ(𝛻) of values in the population.

Hidden States. Let ϖ be a !nite set of hidden states 𝛻. Neither the researcher nor
the agents know the state initially. For example, the hidden state might indicate how
useful GPT-5 is for a given task.

Technologies. In order to learn more about themselves and about the population,
each agent 𝜀 can use her information acquisition technology ℵ𝜀 to acquire a signal ℶ𝜀.
Let ϱ be a !nite set of technologies and let ⨋ be a !nite set of signals. A cost function ℸ
determines agent 𝜀’s cost of acquiring signal ℶ𝜀 if her technology is ℵ𝜀, i.e.,

ℸ ς ⨋ φ ϱ→ ℝ+ ∇ {ε}

For example, a technology could indicate how long it takes a consumer to set up a
coding task for GPT-5. Some consumers may be faster than others.

Let agent 𝜀’s type be her technology-value pair (ℵ𝜀, 𝜗𝜀). We do not assume that
agent 𝜀 knows anything about her type up front. For example, a consumer may not
know how long it will take her to set up a coding task for GPT-5. This modeling choice
may seem to rule out many natural cases, but Remark 2 explains why it does not.
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Joint Distribution. The joint distribution ℷ determines how states, technologies,
and values are distributed. Formally, let

ℷ ϑ ∂ (ϖφ ϱ φ ∲)

where ℷ has a !nite support. Let the realized distribution ℷ(𝛻) be the marginal
distribution over ϱ φ ∲ after conditioning on the state 𝛻. We assume that the agents
know the joint distribution ℷ, but not necessarily the realized distribution ℷ(𝛻).

There are two steps to the sampling process. First, the state 𝛻 is drawn according
to the marginal distribution ℷϖ. This determines the realized distribution ℷ(𝛻), which
describes the frequency of values and technologies in the population.

Second, the researcher randomly draws 𝜔 agents from the population. Formally,
the types (ℵ𝜀, 𝜗𝜀) are drawn independently across agents 𝜀 = 1,… ,𝜔 according to the
realized distribution ℷ(𝛻). To be clear, this means that for any two agents 𝜀 ∳ 𝜕, (ℵ𝜀, 𝜗𝜀)
is independent of (ℵ𝜕, 𝜗𝜕) conditional on the state 𝛻. It does not mean that 𝜗𝜀 is
independent of ℵ𝜀 conditional on the state 𝛻. It also does not mean that (ℵ𝜀, 𝜗𝜀) is
unconditionally independent of (ℵ𝜕, 𝜗𝜕).

Signals. A signal ℶ𝜀 for agent 𝜀 is a function of the state 𝛻, her technology ℵ𝜀, and her
value 𝜗𝜀. In principle, signals could output an arbitrary message, but it is convenient
to let the output be a !nite sequence of real numbers. Formally,

ℶ𝜀 ς ϖ φ ϱ φ ∲ → ℝ−

is a random variable that maps samples (𝛻, ℵ𝜀, 𝜗𝜀) + ℷ to signal realizations ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀).
After observing the signal realization, agent 𝜀 may update her beliefs about the

state 𝛻, her technology ℵ𝜀, and her value 𝜗𝜀. If the learns about the state 𝛻, she may
also update her beliefs about the realized distribution ℷ(𝛻) and thereby learn about
the technologies ℵω𝜀 and values 𝜗ω𝜀 of other agents.

For example, a consumer could learn about her value from GPT-5 by using it.
They might think of di"erent tasks (e.g., writing, coding, translation, search, etc.) and
evaluate how well it performs in each case. Each task corresponds to a di"erent
signal, and GPT-5’s performance at the task corresponds to a signal realization.
Learning about GPT-5’s performance could cause consumer to learn directly about
her own value 𝜗𝜀, and indirectly about other consumers’ values 𝜗ω𝜀.
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Remark 1. Technically, each agent 𝜀 acquires exactly one signal. However, this model
is rich enough to accommodate settings where agents acquire multiple signals. For
any two signals ℶ𝜀, ℶ±𝜀 ϑ ⨋, we can enrich the signal space by adding a combined signal

ℶ±±𝜀 (𝛻, 𝜗𝜀, ℵ𝜀) =
⌋
ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀), ℶ±𝜀 (𝛻, 𝜗𝜀, ℵ𝜀)

⌈
(1)

Similarly, this model can accommodate dynamic information acquisition. Suppose
that agent 𝜀 wants to acquire signal ℶ±𝜀 if and only if the realization of signal ℶ𝜀 is in a set
⊳ 𝜚 ℶ𝜀(ϖ,∲ ,ϱ). We can enrich the signal space by adding a dynamic signal

ℶ±±𝜀 (𝛻, 𝜗𝜀, ℵ𝜀) =
⌉
{
}

⌋
ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀), ℶ±𝜀 (𝛻, 𝜗𝜀, ℵ𝜀)

⌈
ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀) ϑ ⊳

ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀) otherwise
(2)

We can do so for every possible combination of (ℶ𝜀, ℶ±𝜀 ,⊳) without violating the
assumption that the signal space ⨋ is !nite. Along these lines, we can also
accommodate dynamic signals that combine more than two signals.

Remark 2. Initially, agent 𝜀 does not know anything about her type (𝜗𝜀, ℵ𝜀). However,
it is easy to accommodate initial information as follows. First, de!ne a signal ℶ𝜀 with
cost ℸ(ℶ𝜀, ℵ𝜀) = 0 for all types ℵ𝜀. This signal realization represents the agent’s initial
information. Second, expand the signal space ⨋ by allowing all dynamic signals that
combine ℶ𝜀 with another signal ℶ±𝜀 ϑ ⨋, following the construction (2).

Model Instances. Amodel instance ⊲ combines the model primitives, i.e.,

⊲ = (ϖ,∲ ,ϱ,⨋,ℷ, ℸ)

We assume that the agents know the instance ⊲, but the researcher does not. Let ⨌ be
the collection of all instances that the researcher considers plausible.

2.2 Assumptions

We maintain three assumptions. The !rst assumption says that the collection ⨌ is
su#ciently rich. It refers to highly-structured instances that we call basic.
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De!nition 1. A basic instance ⊲ consists of a binary state spaceϖ, a ternary value
space ∲ , a binary technology spaceϱ, a binary signal space ⨋, a joint distribution ℷ, and
a cost function ℸ. There is a good technology 01𝜀 and a bad technology 02𝜀 , where the good
technology is in the support of the realized distribution ℷ(𝛻) for any state 𝛻 ϑ ϖ. There
is also a good signal ℶ1𝜀 and a bad signal ℶ2𝜀 . The good signal reveals everything, i.e.,

ℶ1𝜀 (𝛻, ℵ𝜀, 𝜗𝜀) = (𝛻, ℵ𝜀, 𝜗𝜀)

The bad signal reveals everything if agent 𝜀 has the good technology. If agent 𝜀 has the
bad technology, it only reveals the technology. That is,

ℶ2𝜀 (𝛻, ℵ𝜀, 𝜗𝜀) =
⌉
{
}

(𝛻, ℵ𝜀, 𝜗𝜀) ℵ𝜀 = ℵ1𝜀
ℵ𝜀 ℵ𝜀 = ℵ2𝜀

Finally, only the good signal under the bad technology can have a non-zero cost. That is,
the cost function satis!es ℸ(ℶ1𝜀 , ℵ1𝜀 ) = ℸ(ℶ2𝜀 , ℵ1𝜀 ) = ℸ(ℶ2𝜀 , ℵ2𝜀 ) = 0.

In a basic instance, agents face a simple information acquisition problem. If they
have the good technology, it does not matter which signal they acquire: they learn
their value at zero cost either way. For that reason, agents might as well assume that
they have the bad technology. In that case, they can either (i) learn their value at a
cost or (ii) not learn their value and avoid that cost.

One notable feature of basic instances is that a positive fraction of the population
will always be well-informed. This follows from the fact that the good technology is
always in the support of the realized distribution. We add this feature to emphasize
that our negative results hold even when some agents are intrinsically well-informed.

Assumption 1. The collection ⨌ includes (but is not limited to) all basic instances.

We stress that Assumption 1 does not restrict attention to basic instances, and
that our positive results must hold for any collection of instances (basic or not).

There are two reasons why we draw attention to basic instances. First, it makes it
easier to judge whether the kinds of instances that drive our negative results are likely
to arise in a given application of interest. Second, it highlights that our negative
results are not driven by cases that are obviously pathological.
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The second assumption says that agents can combine signals. That is, acquiring
one signal does not prevent an agent from acquiring another one.

Assumption 2. Restrict attention to instances ⊲ with the following structure. The set of
signals ⨋ consists of base signals and combined signals. For every set of base signals⦃
ℶ1𝜀 ,… , ℶ⋛𝜀

⦄
𝜚 ⨋, there is a combined signal ℶ𝜀 ϑ ⨋ where

∓(𝛻, 𝜗𝜀, ℵ𝜀) ϑ ϖφ ∲ φ ϱ ς ℶ𝜀 (𝛻, ℵ𝜀, 𝜗𝜀) =
⌋
ℶ1𝜀 (𝛻, ℵ𝜀, 𝜗𝜀),… , ℶ⋛𝜀 (𝛻, ℵ𝜀, 𝜗𝜀)

⌈
(3)

If these base signals have a !nite cost, then the combined signal also has a !nite cost, i.e.,

∓ℵ𝜀 ϑ ϱ ς
⋛⟨

𝜕=1
ℸ
⟩
ℶ𝜕𝜀 , ℵ𝜀

⟪
<ε ⥳ ℸ (ℶ𝜀, ℵ𝜀) <ε (4)

For example, Assumption 2 says that evaluating GPT-5 on a coding task does not
prevent a consumer from also evaluating GPT-5 on a translation task. This may be
violated in practice if, say, the consumer only has time to prepare one task.

The third assumption says that agent 𝜀 can learn her own value 𝜗𝜀 at a !nite cost.
It refers to a particular kind of signal that we call a revealing signal.

De!nition 2. A signal ℶ𝜀 is revealing if agent 𝜀 learns her value 𝜗𝜀 after acquiring it, i.e.,

Var[𝜗𝜀 ( ℶ𝜀(𝛻, ℵ, 𝜗𝜀)] = 0 (5)

A revealing signal for agent 𝜀 does not necessarily reveal everything. It does not
necessarily reveal the hidden state 𝛻, the values 𝜗ω𝜀 of other agents, or the technology
pro!le ℵ = (ℵ1,… , ℵ𝜔). An agent with access to a revealing signal can precisely learn
about her own preferences, but not necessarily more than that.

Assumption 3. Restrict attention to instances ⊲ that feature a revealing signal ℶ𝜀 ϑ ⨋
that has !nite cost. That is, for all technologies ℵ𝜀, ℸ (ℶ𝜀, ℵ𝜀) <ε.

For example, a consumer that dedicates an entire week to testing GPT-5 may get
a pretty good sense of her value from that product, even if she does not necessarily
learn how much value other consumers will derive from that product. Even if this is
quite costly to the consumer, Assumption 3 says that it is feasible. Of course, this
assumption is at best an approximation of reality. Regardless of how much e"ort they
put in, real consumers will never learn their values with perfect precision.

11



Assumption 3 follows work in mechanism design that assumes there is a known
action available to agents but seeks robustness to other unknown actions (e.g., Carroll
2015; Carroll 2019). In this case, the revealing signal is the known action. Of course,
the revealing signal may be quite costly. Agents may prefer to acquire other signals
that the researcher may not be aware of (e.g., signals that are cheaper but provide less
information about 𝜗𝜀, or signals that only provide information about the state 𝛻).

2.3 Mechanism Design

To learn about preferences, the researcher can commit to amechanism. As usual,
agents send messages to the researcher and the researcher uses those messages to
determine the alternative 𝜛𝜀 and transfers 0𝜀 for each agent 𝜀.

De!nition 3. Fix a set of message pro!les3 = (3𝜀)𝜔𝜀=1. Amechanism (x, t) consists of:

1. Allocation rules that maps message pro!les to distributions over alternatives 𝜛, i.e.,

x𝜀 ς 3 → ∂ (∱)

2. Transfer rules that map message pro!les to distributions over transfers, i.e.,

t𝜀 ς 3 → ∂ (ℝ)

For convenience, let x𝜀 (4) refer to both the distribution over alternatives as well
as the realized alternative. Do the same for transfers t𝜀 (4).

After the mechanism is announced, the game proceeds in three steps. First, each
agent 𝜀 chooses a signal ℶ𝜀 to acquire. Second, each agent 𝜀 observes her signal
realization ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀). Third, each agent 𝜀 sends a message4𝜀. Agents’ strategies
specify what signals they acquire and what messages they send to the researcher.

De!nition 4. Agent 𝜀’s strategy (s𝜀,m𝜀) pairs a signal rule s𝜀 ϑ ∂ (⨋) with amessage
rulem𝜀 that maps the signal and signal realization to a distribution over messages, i.e.,

m𝜀 ς ⨋ φℝ− → ∂ (3𝜀)

For convenience, let s𝜀 refer to both the distribution over signals chosen as well as
the realized signal ℶ𝜀. Do the same for messagesm (ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)).
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Agent 𝜀’s utility depends on her values 𝜗𝜀, her alternative 𝜛𝜀, the transfers 0𝜀 she
receives, and the cost ℸ(ℶ𝜀, ℵ𝜀) of her chosen signal ℶ𝜀 given her technology ℵ𝜀. That is,

5𝜀 (𝜗𝜀,𝜛𝜀, 0𝜀, ℶ𝜀, ℵ𝜀) = 𝜗𝜀𝜛𝜀 + 0𝜀 ω ℸ (ℶ𝜀, ℵ𝜀)

In turn, agent 𝜀’s expected utility from a strategy pro!le (s,m) is

⊳𝜀 (s,m, x, t) = E[5𝜀(𝜗𝜀, x𝜀(4), t𝜀(4), s𝜀, ℵ𝜀)] where 4𝜀 =m𝜀(s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀))

The expectation is taken with respect to the joint distribution ℷ, any randomness in
the strategy pro!le (s,m), and any randomness in the mechanism (x, t).

With this notation in hand, we can specify our solution concept.

De!nition 5. A strategy pro!le (s,m) is a Bayes-Nash equilibrium of mechanism (x, t)
if every agent 𝜀 prefers her strategy (s𝜀,m𝜀) to every alternative strategy

⌋
s±𝜀 ,m±

𝜀
⌈
. That is,

⊳𝜀 (s,m, x, t) ⨍ ⊳𝜀
⌋⌋
s±𝜀 , sω𝜀

⌈
,
⌋
m±

𝜀 ,mω𝜀
⌈
, x, t

⌈

Having speci!ed a solution concept, we can formalize the researcher’s problem.

2.4 Elicitable Statistics

The researcher wants to learn about the population’s values over alternatives.
Speci!cally, the researcher wants to learn about ℷ∲(𝛻), the marginal distribution

of values conditional on the realized state 𝛻. This is the distribution he cares about
because it describes realized demand by an informed population. For example, if the
realized state 𝛻 indicates that GPT-5 is useful, the researcher may learn that demand
is high. Typically, he does not care whether demand would also have been high in a
counterfactual state 𝛻± where GPT-5 was not useful.

We focus on learning statistics that are moments of the realized marginal
distribution ℷ∲(𝛻). Two important objects that this leaves out are the values
(𝜗1,… , 𝜗𝜔) of the sampled agents and the distribution ℷ∲(𝛻) itself. However, our
negative results immediately imply that these objects cannot be elicited.

De!nition 6. A 6-statistic is a moment of the realized marginal distribution ℷ∲(𝛻).
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Given a function 6 ς [ω 7𝜗, 7𝜗]→ ℝ with a !nite discontinuity set, the 6-statistic is

E[6(𝜗𝜀) ( 𝛻]

Put di"erently, the 6-statistic is the probability limit of the sample moment, i.e.,

plim
𝜔→ε

1
𝜔
⟨

𝜀=1
6(𝜗𝜀)

The researcher’s data consists of the messages41,… ,4𝜔 sent by the sample of 𝜔
agents in equilibrium. Traditionally, a statistic is identi!ed if there exists an estimator
whose estimate converges to said statistic in the limit as the sample size 𝜔 grows. The
same is true in our model, except that whether a statistic is identi!ed also depends on
the sequence of mechanisms that generates the data.

De!nition 7. Fix a sequence of mechanisms (x𝜔, t𝜔) and estimators 8𝜔 ς (3𝜀)𝜔𝜀=1 → ℝ.
A 6-statistic is strongly identi!ed if, for all instances ⊲ ϑ ⨌ and equilibria (s𝜔,m𝜔),

8𝜔(41,… ,4𝜔)→9 E[6(𝜗𝜀) ( 𝛻] where 4𝜀 = m𝜀(s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)) (6)

A 6-statistic is weakly identi!ed if, for all instances ⊲ ϑ ⨌, condition (6) holds for some
sequence of equilibria (s𝜔,m𝜔).

Just as the researcher is free to recruit as many agents as he wishes, he is free to
choose any mechanism he wishes. He can strongly elicit a statistic if he can design
some sequence of mechanisms for which the statistic is strongly identi!ed.

De!nition 8. A 6-statistic is strongly elicitable if there is a sequence of mechanisms
and estimators that strongly identify it.

We also consider weak elicitation, which allows for “bad equilibria” where the
researcher’s estimate does not converge to the 6-statistic. It has two conditions. First,
the researcher must weakly identify the statistic. That is, there must exist a “good
equilibrium” where the researcher’s estimate converges to the 6-statistic. Second, the
researcher’s estimate can never be less accurate than a no-information benchmark. In
other words, even if there are bad equilibria, they should not be unreasonably bad.

The no-information benchmark compares the mean-square error of the
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researcher’s estimate with the ex ante variance of the 6-statistic, i.e.,

Var[E[6(𝜗𝜀) ( 𝛻]]

We call this the no-information benchmark because it represents the best-attainable
mean-square error in an alternative model where agents cannot acquire signals.

De!nition 9. A sequence of mechanisms (x𝜔, t𝜔) and estimators 8𝜔 satisfy the
no-information benchmark if, for all instances ⊲ ϑ ⨌ and equilibria (s𝜔,m𝜔),

lim sup
𝜔→ε

E
⟫
(8𝜔(41,… ,4𝜔) ω E[6(𝜗𝜀) ( 𝛻])

2❲ ⨎ Var[E[6(𝜗𝜀) ( 𝛻]]

with messages4𝜀 = m𝜀(s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)).

De!nition 10. A 6-statistic is weakly elicitable if there is a sequence of mechanisms
and estimators that (i) weakly identify it and (ii) satisfy the no-information benchmark.

Remark 3. It is certainly possible to de!ne an even weaker form of elicitation that
only requires weak identi!cation. This would entirely ignore bad equilibria, including
“unreasonably bad” equilibria that lead to worse estimates than what could be
achieved if agents did not acquire any information.

Absent a compelling criterion for equilibrium selection, we do not !nd this
weaker form of elicitation to be especially convincing or robust. Putting the merits
aside, we do not study this weaker form of elicitation because (i) doing so would not
a"ect our existing positive results, and (ii) we expect that any new positive results
would involve mechanisms that we consider particularly unrealistic.

To illustrate (ii), consider a mechanism where the researcher !rst asks agents to
report the instance ⊲ = (ϖ,∲ ,ϱ,⨋,ℷ, ℸ) and then harshly penalizes all of the agents if
their reports are not identical. There is an equilibrium where agents are truthful,
alongside many other equilibria where agents are not truthful. Learning the instance
⊲ does not solve or trivialize the researcher’s problem, since knowing the joint
distribution ℷ is di"erent from knowing the realized distribution ℷ(𝛻). However, it
may expand the set of statistics that the researcher can elicit.

Finally, we stress that a researcher is likely to face challenges in practice that are
not captured in this model. He may only have access to a small number 𝜔 of agents, or
!nd it costly to recruit more. He may not be able to design any mechanism he wishes.
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He may face budget constraints. As a !rst step, we ask what an empowered researcher
can achieve when these particular challenges are not present. Even so, we !nd that
what the researcher can achieve is quite limited.

3 Strong Elicitation

It turns out that non-trivial statistics are not strongly elicitatable.

Theorem 1. A 6-statistic is strongly elicitable if and only if 6 is constant.

The strength of Theorem 1 re$ects three features of our model. First, we insist on
point identi!cation rather than partial identi!cation. It may be possible to obtain
informative bounds for a given statistic, even if it is not point identi!ed. Second,
strong elicitation requires identi!cation in every equilibrium. Theorem 2 shows how
our results change when we relax this requirement. Third, following Assumption 1,
we insist on elicitation for a rich set of instances (i.e., the basic instances).

With that said, these three features would all be without loss in classical models
of preference elicitation where agents know their values (e.g., Becker et al. 1964;
Clarke 1971). Since we obtain a negative result in settings where classical models
obtain positive results, Theorem 1 tells us that stronger assumptions are needed to
learn about a population’s preferences when processing information is costly.

Next, we provide a high-level intuition for Theorem 1. To understand how to
turn this high-level intuition into a proof, see the proof outline in Appendix A.1.

3.1 Intuition for Theorem 1

We provide intuition using a simple example. The technology spaces is a singleton.
The state space is ϖ = {ω1, 1}. For coe#cients ., , ϑ ℝ, agent 𝜀’s value is

𝜗𝜀 = ,𝛻 + <𝜀 where <𝜀 + U!"#$%&{ω.,.} i.i.d.

There are two signals: a revealing signal that costs 7ℸ ℏ . and reveals the value 𝜗𝜀; and
an uninformative signal that reveals nothing and costs nothing.

There are two cases to consider. We begin with 6-statistics where 6 is non-a#ne,
and then turn to the case where 6 is a#ne (but not constant).
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3.1.1 Why Non-A"ne Statistics are Not Strongly Elicitable

Suppose that , = 0, so that the values 𝜗𝜀 are uncorrelated across agents 𝜀.
This is an easy case when it comes to eliciting a#ne statistics, like the

population’s average value. The researcher can ask each agent to make a report >𝜗𝜀
equal to their willingness to pay.2 If they do not acquire information, each agent 𝜀
reports >𝜗𝜀 = 0 and the average reported value is 0. If they acquire information, each
agent 𝜀 reports >𝜗𝜀 = 𝜗𝜀 and the average reported value converges to the average
E[𝜗𝜀 ( 𝛻] = 0 by the law of large numbers. The average is identi!ed either way.

Interestingly, this setting is a hard case when it comes to eliciting non-a#ne
6-statistics. There are two reasons for this.

1. In this example, most statistics are hard to identify if agents are not informed.

To see this, consider a 6-statistic that is not an average. Typically, the 6-statistic
will be sensitive to the parameter .. If agents do not acquire information, their
willingness to pay does not pin down the 6-statistic.

2. In this example, it is di#cult to incentive agents to acquire information.

There are two broad reasons for agent 𝜀 to acquire information. The !rst reason
is to decide whether she is willing to “buy” the product at a given price. This is
not su#cient because the information cost 7ℸ far exceeds the agent’s uncertainty
over her value 𝜗𝜀. The second reason is to better predict the messages4ω𝜀 sent
by other agents. This is not su#cient because agent 𝜀’s value 𝜗𝜀 is independent
of any private information that the other agents might have.

One way to circumvent these di#culties is by having agents directly report the
parameter . – or more generally, the instance ⊲ – and penalize them if any of their
reports disagree. This does not require agents to acquire information because the
instance ⊲ (and therefore, .) is common knowledge. The problem with this
mechanism is that it has many equilibria, most of which are non-truthful.

It is possible to imagine many other mechanisms, including ones that take
advantage of the special structure of basic instances. Recall that, in a basic instance, a
positive fraction of agents learn their value 𝜗𝜀 at zero cost. If this were true in our
simple example, the researcher could identify the parameter . in two steps. First, ask

2It is easy to incentivize truth-telling using the Becker–DeGroot–Marschak (BDM) mechanism.
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agents to report their willingness to pay. Second, estimate the parameter . by
excluding all apparently-uninformed reports >𝜗𝜀 = 0 from the data.

The challenge at this point is to rule out all possible mechanisms, for any
non-a#ne 6-statistic, and for any collection of instances ⨌ that includes the basic
instances. We leave this challenge to the proof outline in Appendix A.1.

3.1.2 Why A"ne Statistics are Not Strongly Elicitable

Suppose that , = 1, so that the values 𝜗𝜀 are correlated across agents 𝜀.
The issues that arise are similar to the non-a#ne case. First, observe that a#ne

statistics – say, the population’s average value – are proportional to the state 𝛻. If no
agent acquires information, then agents’ willingness to pay is not correlated with the
state 𝛻. Furthermore, when no one acquires information, acquiring information does
not help agent 𝜀 predict the messages4ω𝜀 that other agents send. This makes it hard
to sustain information acquisition in every equilibrium, unless the costs 7ℸ are low
relative to the agents’ uncertainty about their values (captured by .).

In this example, the uninformative equilibrium could be ruled out by assuming
that a positive fraction of agents learn their value 𝜗𝜀 or the state 𝛻 at zero cost. In basic
instances, which have this property, one could construct a mechanism where agents
with the bad technology acquire information in order to predict how agents with the
good technology will behave. Even here, bad equilibria arise if (i) agents with the bad
technology care about the state, while (ii) agents with the good technology do not.

Finally, note that the , = 1 case is also problematic for many non-a#ne statistics.
In contrast, the , = 0 case is not problematic for a#ne statistics. This asymmetry
hints at the possibility that it may be easier to learn about a#ne statistics than about
non-a#ne statistics. Our next result con!rms that this is the case.

4 Weak Elicitation

Since strong elicitation is impossible, we turn to weak elicitation. Fortunately, we !nd
that the researcher can weakly elicit the population’s average value, and other a#ne
statistics. Unfortunately, he cannot weakly elicit anything else.

Theorem 2. A 6-statistic is weakly elicitable if and only if 6 is a#ne.
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Many natural and economically-relevant statistics are not a#ne. For example,
consider the quantity demanded by an informed population at some !xed price 9.
This is proportional to the 6-statistic where

6(𝜗𝜀) = 1(𝜗𝜀 ⨍ 9)

This statistic is likely to be relevant for !rms trying to assess market size or develop
pricing strategies for new products. In our running example, it captures long-run
demand as consumers gain !rst- and second-hand experience with GPT-5. Theorem 2
says that the !rm cannot even weakly elicit this statistic.

With that said, the population’s average value is a#ne and is an important
statistic in its own right (see Section 5). Theorem 1 says that the population’s average
value is not strongly elicitable, and therefore “bad equilibria” are inevitable. However,
Theorem 2 says that it is weakly elicitable. That is, the researcher can guarantee the
existence of “good equilibria” where he learns the population’s average value, while
also ensuring that his estimates are not unreasonably bad in any equilibrium.

The rest of this section provides intuition for Theorem 2. In Section 4.1, we
describe the mechanisms we use to weakly elicit the population’s average value. In
Section 4.2, we explain at a high level why the mechanism works, and why we cannot
weakly elicit other statistics. Readers interested in a deeper understanding should
refer to the examples in Appendix A.2 and the proof outline in Appendix A.3.

4.1 Mechanism

We propose a mechanism for weakly eliciting the population’s average value (and
equivalently, any other a#ne statistic). It presents agents with an incentivized survey
and asks them, before completing the survey, to predict the survey results.

More precisely, we build on the Becker–DeGroot–Marschak (BDM) mechanism.
This mechanism is widely-used in behavioral experiments to elicit willingness to pay.
It asks each agent to report their values >𝜗𝜀, draws a random price 9, and sells the
product to the agent if and only if the reported value exceeds the price.

We also rely on proper scoring rules. These are rules that can be used to
incentivize an agent 𝜀 to report her beliefs about some random variable.3 Here, the

3Proper scoring rules tend to give higher scores to beliefs that assign higher probability to the observed
value. There are many known proper scoring rules and they are easy to construct (e.g., McCarthy 1956).
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random variable is the average reported value in the BDMmechanism, among agents
other than 𝜀, i.e.,

⋆𝜗𝜀 =
1

𝜔 ω 1
⟨

𝜕∳𝜀
>𝜗𝜕

We denote agent 𝜀’s beliefs over the average reported value ⋆𝜗𝜀 by

≨𝜀 ϑ ⨏ = ∂ (ℝ)

With this notation, we can de!ne proper scoring rules in our setting.

De!nition 11. A scoring rule for agent 𝜀 maps her reported belief >≨𝜀 ϑ ⨏ and the
average reported value ⋆𝜗𝜀 ϑ ℝ to a numerical score, i.e.,

SR ς ⨏ φℝ→ ℝ

It is proper if she maximizes the expected score by reporting her beliefs truthfully, i.e.,

∓≨𝜀 ϑ ⨏, ≨𝜀 ϑ argmax
>≨𝜀

E≨
❳
SR

⌋ >≨𝜀, ⋆𝜗𝜀
⌈/

We can now introduce the BDM-with-betting mechanism. It involves two stages.
The second stage is simply the BDMmechanism. The !rst stage asks agents to predict
the average of the reported values in the second stage. Agents are paid more if their
predictions turn out to be more accurate.

De!nition 12. The BDM-with-betting mechanism (x, t) is parameterized by a proper
scoring rule SR and scaling parameter 𝐴. Each agent 𝜀 sends a message

4𝜀 =
⌋
>𝜗𝜀, >≨𝜀

⌈
ϑ ℝ φ⨏

that consists of a reported value >𝜗𝜀 and a reported belief >≨𝜀. She receives the product if her
reported value exceeds the random price 9, i.e.,

x𝜀
⌋
>𝜗, >≨

⌈
= 1( >𝜗𝜀 ⨍ 9) where 9 + U!"#$%&[ω 7𝜗, 7𝜗]

We mostly rely on the continuous ranked probability score and the quadratic scoring rule.
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She is charged if she receives the product and earns a bonus from the scoring rule, i.e.,

t𝜀
⌋
>𝜗, >≨

⌈
= 𝐴 ⋜ SR

⌋ >≨𝜀, ⋆𝜗𝜀
⌈
ω 9 ⋜ 1( >𝜗𝜀 ⨍ 9)

We argue that BDM-with-betting is simple compared to other mechanisms that
elicit preferences by having agents bet on each others’ reports (e.g., Crémer and
McLean 1988, Miller et al. 2005). There are two ways in which it is simple.

1. Estimation is straightforward.

The researcher’s estimate of the population’s average value is the average
reported value, i.e.,

8𝜔(41,… ,4𝜔) =
1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀

In particular, the researcher does not try to estimate the population’s average
value from their reported beliefs.

2. Incentives for truth-telling are straightforward.

The second stage (BDM) incentivizes agents to truthfully report their
willingness to pay given any information they acquired. The !rst stage (betting)
plays no role when it comes to incentivizing truthfulness; the researcher does
not use bets in the !rst stage to detect or disincentive lies in the second stage.

In contrast, other mechanisms that elicit preferences by having agents bet on each
others’ reports tend to use those bets in more complicated ways.4

What is interesting about BDM-with-betting is not the mechanism itself. It is the
fact that it can incentivize agents to acquire precisely the kind of information needed
to identify the population’s average value (and not much else). Next, we explain why.

4.2 Intuition for Theorem 2

We !rst explain why the BDM-with-betting mechanism can be used to weakly elicit
the population’s average value (and, equivalently, any other a#ne statistic). Then we

4Full surplus extractionmechanisms implicitly use bets to make inferences about agents’ willingness
to pay (e.g., Crémer and McLean 1988). Peer prediction mechanisms have agents report signal realiza-
tions, which are implicitly treated as bets on others’ reported signal realizations (e.g., Miller et al. 2005).
In both cases, the designer uses betting as a way to incentivize truth-telling. In our setting, incentivizing
truth-telling is straightforward, and betting is simply a way to incentivize information acquisition.
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brie$y explain why non-a#ne statistics cannot be weakly elicited.

4.2.1 Why BDM-with-Betting Works

The BDM-with-betting mechanism may seem naive. It does not incentivize agents to
learn their values 𝜗𝜀, at least not in general. Instead, it incentivizes agents to learn
about others’ reported values >𝜗ω𝜀. Why is that enough to weakly elicit the population’s
average value? Why is it not enough to weakly elicit any other statistic?

Recall the simple example from Section 3.1. The technology space is a singleton
and the state space is ϖ = {ω1, 1}. For coe#cient , ϑ ℝ, agents’ values are

𝜗𝜀 = ,𝛻 + <𝜀 where <𝜀 + 𝐵(0, 1) i.i.d.

There are two signals: a revealing signal that costs 7ℸ ℏ . and reveals the value 𝜗𝜀; and
an uninformative signal that reveals nothing and costs nothing. There are two cases
to consider.

Uncorrelated Values. Let values 𝜗𝜀 be uncorrelated across agents (i.e., , = 0).
Recall from Section 3.1 that this is the hard case for eliciting statistics other than the
average, because it is generally impossible to incentivize agents to acquire the
revealing signal. However, the average has a special property: it is not necessary for
agents to acquire information when their values are uncorrelated. To see this,
compare the researcher’s estimate if the agents acquire information, i.e.,

1
𝜔

𝜔⟨

𝜀=1
𝜗𝜀 =

1
𝜔

𝜔⟨

𝜀=1
<𝜀 →9 0

to the researcher’s estimate if the agents do not acquire information, i.e.,

1
𝜔

𝜔⟨

𝜀=1
E[𝜗𝜀] = 0

Either way, the researcher’s estimate is correct in the limit.
More generally, when values are uncorrelated, the researcher can take advantage

of the wisdom of the crowd. It is not necessary that agents learn their values perfectly.
What is important is that the errors >𝜗𝜀 ω 𝜗𝜀 they make are uncorrelated across agents 𝜀.
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This property is what sets the average apart from other statistics.

Correlated Values. Let values 𝜗𝜀 be correlated across agents (say, , = 1). If the
betting stakes 𝐴 are su#ciently high, then agent 𝜀 will acquire the revealing signal if it
helps her predict the average reported value ⋆𝜗𝜀. Suppose that agent 𝜀 expects all other
agents 𝜕 ∳ 𝜀 to acquire their revealing signals and learn their values 𝜗𝜕. Then she
expects the average reported value ⋆𝜗𝜀 to be

⋆𝜗𝜀 =
1

𝜔 ω 1
⟨

𝜕∳𝜀
𝜗𝜕 →9 𝛻

Ideally, agent 𝜀 would learn directly about the state 𝛻, but that is not feasible in this
example. But she can learn about her value 𝜗𝜀, which is correlated with the state 𝛻.
Therefore, betting incentivizes her to acquire the revealing signal.

There are two equilibria in this example, provided that the betting stakes 𝐴 are
su#ciently large. In the informed equilibrium, all agents acquire the revealing signal
and report their values >𝜗𝜀 = 𝜗𝜀. The researcher’s estimate is consistent, i.e.,

1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀 =

1
𝜔

𝜔⟨

𝜀=1
𝜗𝜀 = 𝛻

In the uninformed equilibrium, all agents acquire the uninformative signal and report
their expected values >𝜗𝜀 = E[𝛻]. Now, the researcher’s estimate is not consistent, i.e.,

1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀 =

1
𝜔

𝜔⟨

𝜀=1
E[𝜗𝜀] = E[𝛻]

There is no wisdom of the crowd in the uninformed equilibrium, since errors >𝜗𝜀 ω 𝜗𝜀
are correlated across agents 𝜀.

This multiplicity does not always arise (e.g., Example 1 in Appendix A.2) but it is
unavoidable in general (Theorem 1). Weak elicitation allows for the existence of the
uninformed equilibrium as long as the researcher’s estimate is at least as good as the
no-information benchmark. In this case, the mean-square error of the researcher’s
estimate is Var[𝛻]. This precisely matches the no-information benchmark.
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Generalizing the Example. In general, there is no clean separation between
“uncorrelated values” and “correlated values”. Whether values are correlated depends
on what information agents begin with and the properties of the signals they acquire.
This is especially true for non-binary signal spaces, where agents may deviate from
the revealing signal in many ways. For example, they may prefer to learn directly
about the state 𝛻, or only acquire partial information about their values 𝜗𝜀.

Furthermore, a general proof must account for counter-intuitive phenomena that
can arise for highly-unstructured signal spaces and joint distributions. For example, it
is possible for values to be uncorrelated when agents acquire the revealing signal, but
correlated when agents do not (e.g., Example 3 in Appendix A.2). This makes the best
response map unstable – since each agent acquires information only if other agents do
not – and suggests that pure-strategy equilibria may not exist. Rather than attempting
to construct mixed-strategy equilibria in strategy spaces of arbitrary size and
dimension, we take a non-constructive approach to the proof.

Despite these di#culties, we !nd that BDM-with-betting can always sustain a
sequence of equilibria where a wisdom-of-the-crowd e"ect holds in the limit. That is,
betting incentivizes agents to acquire information until the point where errors >𝜗𝜀 ω 𝜗𝜀
are (approximately) uncorrelated. We outline the proof in Appendix A.3.

4.2.2 Why Non-A"ne Statistics are Not Weakly Elicitable

We have already explained why the BDM-with-betting mechanism, as currently
constructed, cannot be used to weakly identify non-a#ne statistics. To recap, in the
uncorrelated case of the example discussed above, BDM-with-betting does not
incentivize information acquisition. The wisdom of the crowd means that this is not a
problem for a#ne statistics, but it does not apply to non-a#ne statistics.

To see why no mechanism can weakly elicit non-a#ne statistics, we refer to the
following example. If the joint distribution ℷ puts probability one on a single state 𝛻,
then values 𝜗𝜀 are independent across agents 𝜀. In that case, the no-information
benchmark has a mean-square error of

Var[E[6(𝜗𝜀) ( 𝛻]] = Var[E[6(𝜗𝜀)]] = 0

In other words, when the state 𝛻 is !xed with probability one, even agents that
acquire no information can infer any statistic of the realized distribution ℷ(𝛻).
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Although this example may seem like an easy case for the researcher, the
intuition for Theorem 1 tells us that it is not. Recall from Section 3.1 that the only
mechanisms that appear capable of identifying non-a#ne statistics involve asking the
agents for information about the instance ⊲. Such mechanisms inevitably feature
equilibria where agents mislead the researcher, and these equilibria can lead to a
positive mean-square error that exceeds the no-information benchmark. That is,
these mechanisms open the door to outcomes that are worse than if the researcher
had simply given up on the idea of incentivizing agents to acquire information.

At this point, we have fully characterized the set of elicitable statistics, under
both the strong and weak forms of elicitability. These results are largely negative, but
suggest that it may be possible to learn about the population’s average value. Next, we
explore an important class of applications where eliciting the population’s average
value is precisely what is needed: social choice.

5 Application to Social Choice

We now turn to the problem of social choice, where a planner must choose a single
alternative on behalf of a population. Speci!cally, we seek social choice mechanisms
that work well even when processing information is costly.

It turns out that the methods we developed to elicit preferences can be used to
design social choice mechanisms that are robust to costly information processing.
This new setting raises new theoretical challenges, but it also broadens the set of
potential applications. For example:

1. Democratic elections and referendums, especially at the local level.

Empirical studies suggest that many voters are poorly-informed (e.g., Delli
Carpini and Keeter 1996) and may vote di"erently if they were better informed
(e.g., Bartels 1996). If voters are not processing the information available about
a candidate or ballot measure, they could easily make misguided decisions.

2. Corporate governance.

Shareholders routinely elect board members and vote on issues that a"ect their
interests (e.g., whether to approve a merger). Although large shareholders have
strong !nancial incentives to stay well-informed, smaller shareholders and
retail investors may not (e.g., Kastiel and Nili 2016, Brav et al. 2023).
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3. Collective decision-making in organizations.

For example, a committee may make decisions on behalf of the faculty at a
university. Alternatively, a workforce may hold votes on whether to unionize,
who to elect as a union o#cial, etc. As in the previous applications, individuals
may have little incentive to do their due diligence before voting.

Before presenting our result (Theorem 3), we describe a model of social choice
(Section 5.1) and the challenges that good mechanisms must overcome (Section 5.2).
Then we state our result (Section 5.3), propose a mechanism (Section 5.4), and explain
why it works (Section 5.5).

5.1 Model

We convert our model of preference elicitation into a model of social choice.
The researcher is now a planner. The 𝜔 agents are now voters participating in a

committee (or citizen’s assembly, mini-public, jury, etc.) that take actions on behalf of
a larger population. Alternatives 𝜛 ϑ ∱ indicate whether a measure passes (𝜛 = 1) or
not (𝜛 = 0). The mechanism must assign the same alternative 𝜛 to all agents.

Assumption 4. Restrict attention to mechanisms (x, t)where, for all message pro!les4,

x1(4) = x2(4) = … = x𝜔(4)

In a slight abuse of notation, let x(4) refer to the one alternative chosen for all agents.

We maintain the assumption that the planner can recruit as many agents as he
likes and spend as much money as he likes. This strikes us a reasonable starting point
for large populations, like the residents of a large municipality or the employees of a
major corporation. Since the population is large, even a large sample of agents will
only be a small fraction of the population, and the cost of transfers to 𝜔 agents will
tend to be small relative to the potential gains for everyone else.

The planner seeks a sequence of mechanisms that converges to e#ciency. We
measure e#ciency by comparing the expected welfare of a given mechanism with
!rst-best welfare. Welfare is the population’s average value from an alternative 𝜛, i.e.,

E[𝜗𝜀𝜛 ( 𝛻]
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Expected welfare for instance ⊲, mechanism (x,m), and strategy pro!le (s,m) is

𝐶 (⊲, s,m, x, t) = E
❳
𝜗𝜀x(4) ( 𝛻

/

with messages4𝜀 =m𝜀(s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)). Finally, !rst-best welfare is the highest
expected welfare that the planner could achieve, if he knew the instance ⊲ and the
hidden state 𝛻. Formally, it is

OPT(⊲) = E\max
𝜛

E[𝜗𝜀𝜛 ( 𝛻](

We ignore the cost of information acquisition in all of these de!nitions, but this is
essentially without loss if the population is large. After all, only the committee
members will be asked to acquire information. Their information costs will tend to be
small relative to the potential gains for the broader population.

De!nition 13. Fix an instance ⊲. A mechanism (x, t) is strongly .-e#cient if expected
welfare is within . of !rst-best for every equilibrium (s,m), i.e.,

𝐶(⊲, s,m, x, t) ⨍ OPT(⊲) ω . (7)

It is weakly .-e#cient if inequality (7) holds for some equilibrium (s,m). Let the
smallest constants . where (x, t) are strongly and weakly .-e#cient be called .𝐷(⊲, x, t)
and .𝐶(⊲, x, t), respectively.

The de!nition of convergence to e#ciency mirrors the de!nition of weak
elicitation. That is, we ignore ine#cient equilibria as long as (i) they are not less
e#cient than a no-information benchmark and (ii) there is an e#cient equilibrium.
The no-information benchmark, in this case, means that expected welfare is at least as
high as if the ex-ante optimal alternative had been chosen.

De!nition 14. A sequence (x𝜔, t𝜔) of mechanisms converges to e#ciency if, for every
instance ⊲ ϑ ⨌,

lim
𝜔→ε

7.𝐶 (⊲, x𝜔, t𝜔) = 0 and lim sup
𝜔→ε

7.𝐷 (x𝜔, t𝜔) ⨎ OPT(⊲) ωmax
𝜛

E[𝜗𝜀𝜛]

Neither of these requirements is trivial. In particular, standard voting procedures
do not necessarily satisfy the no-information benchmark (see e.g., Ali et al. 2025,
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Section 1 for an excellent example). Next, we explain what challenges arise.

5.2 Challenges

When trying to solve the planner’s problem, we encounter challenges that do not arise
in models of social choice where agents know their own values. To explain these
challenges, we use themajority-rule mechanism as a foil.

De!nition 15. Themajority-rule mechanism (x, t) asks each agent 𝜀 to report her
preferred alternative >𝜛𝜀 ϑ {0, 1}. Then it sets

t ( >𝜛1,… , >𝜛𝜔) = 0 and x ( >𝜛1,… , >𝜛𝜔) = 1 )1𝜔
𝜔⟨

𝜀=1
>𝜛𝜀 ⨍

1
2⦅

In addition to the standard problems with majority rule, there are three
additional problems that arise when information acquisition is costly.

1. Majority rule only rewards information acquisition in the event that an agent is
pivotal. This is is unlikely (e.g., Mulligan and Hunter 2003).

Agent 𝜀 is pivotal if changing her report >𝜛𝜀 would change the alternative selected
by the mechanism. If she is not pivotal, then information has no instrumental
value. The probability that an agent is pivotal tends to vanish quickly as the
sample size 𝜔 grows, so there is little expected gain from acquiring information.
This is typically true even if 𝜔 is relatively small.

2. Majority rule does not account for the positive externalities of information
acquisition, where one agent’s informed decision can bene!t everyone else.

For example, suppose that agents have common values and that agent 𝜀 knows
she will be pivotal. Acquiring information that identi!es the optimal alternative
would not only improve her well-being, but also the well-being of everyone else.
Since agent 𝜀 does not internalize this bene!t to others, she may acquire less
information than the planner would like.

3. When agents are imperfectly informed, majority rule does not incentivize them to
truthfully report the alternative they prefer given the information they have. This
can distort the outcome of the vote (e.g., Austen-Smith and Banks 1996).
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Since agent 𝜀’s report only matters if she is pivotal, it is optimal for her to
condition her beliefs on being pivotal before making a report. For example,
suppose that agent 𝜀 believes a ballot measure is likely to be both good for her
and very popular among the other agents. If she is truthful, she would vote in
favor of the measure. However, if she conditions on her being pivotal, then she
focuses on a contingency where the measure was not as popular as expected.
This may lead her to revise her beliefs about her own value 𝜗𝜀 downwards.

We stress that these problems are not unique to majority rule. They apply to many
other mechanisms – like the Vickrey-Clarke-Groves (VCG) mechanism, or quadratic
voting – that do not account for voters’ costs of processing information.

Of these challenges, the third one is the most daunting. The !rst two deal with
incentives to acquire information, which we already studied in the preference
elicitation context. The third challenge deals with incentives to be truthful when
voters have not acquired the revealing signal. We cannot rely on BDM to incentivize
truthtelling, because it relies on the ability to allocate di"erent alternatives to di"erent
agents. Furthermore, the intuition for Theorems 1-2 suggests that it is not always
possible to incentivize voters to become fully informed.

Fortunately, it turns out that we can address all three challenges at once, using a
simple adaptation of our method for eliciting the population’s average value.

5.3 Statement of Theorem 3

We can now state the main result of our application to social choice.

Theorem 3. There is a sequence of mechanisms that converge to e#ciency.

The mechanism we use to prove Theorem 3 builds on the Vickrey-Clarke-Groves
(VCG) mechanism. Unfortunately, this mechanism has been criticized as impractical
(see e.g., Rothkopf 2007). It also involves a form of vote buying, which is a nonstarter
in many applications. For these reasons, we now restrict attention to a special case of
the model where we can motivate a more realistic mechanism.

Assumption 5. Restrict attention to instances ⊲ with a binary value space ∲ = {ω1, 1}
and a binary signal space ⨋ = {ℶ𝐸𝜀 , ℶ⊳𝜀 }, where ℶ𝐸𝜀 is a revealing signal and ℶ⊳𝜀 is an
uninformative signal that sets ℶ⊳𝜀 (⋜) = 0. This overrides Assumption 1.
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Assumption 5 allows us to build on the majority-rule mechanism. Majority rule
is widely-used in practice, but fails to account for the intensity of voters’ preferences.
For example, a minority that cares deeply about an issue may be overruled by a
majority that is nearly indi"erent. This means that majority rule is generally
ine#cient, even if voters know their values 𝜗𝜀. Assumption 5 ensures that voters’
preferences are equally intense, since their values are 𝜗𝜀 ϑ {ω1, 1}.5

We maintain Assumption 5 for the rest of the main text and Appendix A. We
leave the general case of Theorem 3 to the Supplemental Appendix.

5.4 Mechanism

Assumption 5 allows us to motivate themajority-rule-with-betting mechanism.
Majority-rule-with-betting has voters cast their votes according to the majority rule
and asks them, before they cast their votes, to predict the results.

To be more precise, majority-rule-with-betting has voters cast their votes
according to the majority rule with high probability. For technical reasons, there is
also a small probability 𝐹 > 0 that a randomly-chosen agent dictates the outcome.6

To de!ne this mechanism, we need to update our notation from Section 4.1. Let
the vote share from agent 𝜀’s perspective be

⋆𝜔𝜀 =
1
𝜔
⟨

𝜕∳𝜀
>𝜛𝜕

Let agent 𝜀’s belief over the vote share be

≨𝜀 ϑ ⨏ = ∂ ([0, 1])

A scoring rule maps a reported belief >≨𝜀 ϑ ⨏ and a vote share ⋆𝜔𝜀 ϑ [0, 1] to a score, i.e.,

SR ς ⨏ φ [0, 1]→ ℝ

5By restricting attention to all-or-nothing information acquisition, it also avoids complications that
arise when voters are partially-informed. For example, when voters are partially-informed, a minority
of voters who are con!dent that the measure is bad for them may be overruled by a majority of voters
who believe it is slightly more likely that the measure is good for them.

6This ensures that voters are pivotal with positive probability and therefore avoids situations where
voters must condition on zero probability events when casting their votes.
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De!nition 16. Themajority-rule-with-betting mechanism (x, t) is parameterized by a
proper scoring rule SR, scaling parameter 𝐴, and probability 𝐹. Agent 𝜀 sends a message

4𝜀 =
⌋
>𝜛𝜀, >≨𝜀

⌈
ϑ {0, 1} φ⨏

that consists of a reported alternative >𝜛𝜀 and a reported belief >≨𝜀. With probability 1 ω 𝐹,
the planner selects the alternative that the majority reports, i.e.,

𝜛( >𝜛, >≨) = 1 )1𝜔
𝜔⟨

𝜀=1
>𝜛𝜀 ⨍

1
2⦅

With probability 𝐹, the planner randomly chooses a voter 𝜀 + U!"#$%&(1,… ,𝜔) and
selects their reported alternative, i.e.,

𝜛( >𝜛, >≨) = >𝜛𝜀

Finally, each agent 𝜀 is paid for her prediction according to the scoring rule, i.e.,

t𝜀
⌋
>𝜗, >≨

⌈
= 𝐴 ⋜ SR

⌋ >≨𝜀, ⋆𝜔𝜀
⌈

This mechanism has two desirable features. First, it does not allow anyone to buy
votes. Transfers are used only to reward accurate predictions. Second, the mechanism
counts all votes equally. In particular, voter 𝜀’s ability to predict the vote share does
not a"ect how much weight is attached to her vote.

Majority-rule-with-betting may not appear that di"erent from the status quo in
many democracies, where voters are free to participate in political betting markets.
Still, there are two di"erences. First, we do not ask voters to bet against each other.
Doing so would give rise to the Grossman and Stiglitz (1980) paradox and undermine
most voters’ incentive to acquire information. Second, we rely on sortition – that is,
random sampling of the population. Voters are members of a citizen’s assembly (or a
committee, etc.) tasked with making a decision on behalf of the population. Sortition
has been used in various forms by democracies dating back to ancient Athens. In the
United States, for example, sortition is used to form jury pools.
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5.5 Intuition for Theorem 3

The rest of this section provides a high-level intuition for Theorem 3.
Recall the three challenges from Section 5.2. The !rst two challenges concern

incentives to acquire information. The reasons why betting incentivizes information
acquisition here are essentially the same as the reasons why betting incentivizes
information acquisition in Theorem 2, which we discuss in Section 4.2

The third challenge, which concerns incentives to be truthful, is new.
Fortunately, it turns out that the kind of information that voters need to acquire in
order to be truthful is closely-related to the kind of information that is relevant to
predicting the vote share. This means that a convenient side e"ect of betting on the
vote share is that it restores truth-telling incentives.

To see this, recall why majority rule may not incentivize truth-telling on its own.
Agent 𝜀 knows that her vote >𝜛𝜀 is pivotal only if the vote share ⋆𝜗𝜀 is exactly 50%.
Therefore, it is in her best interest to vote in favor of the measure whenever her
expected value 𝜗𝜀 conditional on being pivotal is positive, i.e.,

E[𝜗𝜀 ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀), ⋆𝜗𝜀 = 50%] ⨍ 0 (8)

A truthful agent would not condition on pivotality and vote in favor whenever

E[𝜗𝜀 ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)] ⨍ 0 (9)

What determines whether agent 𝜀 will be truthful? It is whether agent 𝜀 perceives
the vote share ⋆𝜗𝜀 to be correlated with her value 𝜗𝜀 even after conditioning on her
information. If not, then conditioning on pivotality does not a"ect agent 𝜀’s beliefs
about her value. As a result, conditions (8) and (9) will be the same.

The reason why high-stakes betting incentivizes agent 𝜀 to acquire information
until she is truthful is because it incentivizes her to acquire any information that is
correlated with the vote share ⋆𝜗𝜀. On the one hand, if 𝜗𝜀 is correlated with the vote
share ⋆𝜗𝜀, then agent 𝜀 bene!ts from acquiring her revealing signal. Once she acquires
the revealing signal, she prefers to vote truthfully. On the other hand, if 𝜗𝜀 is not
correlated with the vote share ⋆𝜗𝜀, then agent 𝜀 also prefers to vote truthfully.

We leave further discussion to the proof outline in Appendix A.4.
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6 Related Literature

We build on and contribute to several research areas in economics, computer science,
political science, and marketing.

Revealed Preferences with Limited Attention. There is a sizable literature that
studies the implications of limited or costly attention for revealed preferences (e.g.,
Masatlioglu et al. 2012; Manzini and Mariotti 2014; Cattaneo et al. 2020), demand
estimation (e.g., Barseghyan et al. 2021a; Barseghyan et al. 2021b), and preference
elicitation (e.g., Cao and Zhang 2021; Mamadehussene and Sguera 2023).

We contribute to this work by exploring the extent to which costly attention is a
fundamental barrier to learning about preferences. These barriers hold regardless of
how much money a researcher can spend, or what kind of experiment he sets up.
Theoretically, these barriers extend to (i) limited attention, a special case of costly
attention where attention is exogenous, and (ii) demand estimation, a special case of
preference elicitation where the mechanism is exogenous.

We also propose a modi!cation of the BDMmechanism, which can also apply to
other methods of eliciting willingness to pay. This modi!cation may strengthen
incentives for information acquisition. Empirical work suggests that BDMmay not be
e"ective without such incentives (Mamadehussene and Sguera 2023).

Full Surplus Extraction. The literature on full surplus extraction asks when it is
possible to incentivize agents to reveal their private types at no expected cost to the
designer (e.g., Crémer and McLean 1988). Roughly, the designer asks each agent to
place a bet on the reports of other agents. If types are correlated across agents, and
these bets are designed carefully, the designer can infer agents’ types from their bets.
Although this literature typically focuses on incentives for truthful reporting,
Bikhchandani (2010) studies the impact of information acquisition.

Although both involve betting, the mechanisms driving our positive results are
simpler and more robust than full surplus extraction mechanisms. BDM-with-betting
is detail-free and uses an o"-the-shelf proper scoring rule to reward accuracy. Full
surplus extraction involves !ne-tuned transfer rules that are very sensitive to the
details of the prior distribution (or a !nite set of prior distributions; see Fu et al. 2021).
Moreover, BDM-with-betting does not require agents’ types to be correlated, whereas.
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full surplus extraction only works if types are correlated in particular ways.
More fundamentally, our work di"ers from full surplus extraction in that we

ignore the monetary costs of eliciting information. We try to understand the limits of
what a researcher can learn, independently of how well-funded he is. In contrast, full
surplus extraction insists on zero costs. It is not surprising that this more ambitious
goal requires stronger assumptions and more complicated mechanisms.

Proper Scoring Rules. The literature on proper scoring rules assumes that the
researcher can make transfers that depend on the realized state. In that case, there is a
wide range of scoring rules that can incentivize agents to truthfully report their beliefs
(see e.g., McCarthy 1956). When the researcher has access to unbounded transfers, as
in our model, he can also incentivize information acquisition by rescaling these
scoring rules. More recent work asks how to incentivize information acquisition
when transfers are bounded (e.g., Li et al. 2022).

We do not assume that the researcher can make state-dependent transfers. In
market research, even if the researcher eventually observes long-run demand, survey
participants may not be willing to wait years before being paid. In social choice,
where the state represents the e"ectiveness of a given policy, society may never reach
a consensus around the e"ectiveness of that policy. Nonetheless, proper scoring rules
play an important role in our positive results; we use them to incentivize agents to
acquire information that predicts summary statistics of other agents’ reports.

We draw particular inspiration from Lambert et al. (2008). Under the assumption
that the researcher can make transfers that depend on the state, they ask what kinds of
statistics can be elicited by a direct mechanism. We formulate our problem similarly,
albeit in a di"erent setting and without restricting attention to direct mechanisms.

Crowdsourcing. A sizable literature in both economics and computer science
studies crowdsourcing mechanisms. These mechanisms encourage many agents to
report information about a common state of nature. Perhaps the most prominent
examples are prediction markets (e.g., Hanson 2003), which assume that the designer
can make transfers that depend on the realized state. When the designer never
directly observes the hidden state, mechanisms like the Bayesian truth serum (e.g.,
Prelec 2004) and peer prediction (e.g., Miller et al. 2005) incentivize truthful reporting.

Of particular relevance is work on peer prediction. Peer prediction mechanisms
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tend to reward agents for making reports that are correlated with the reports of other
participants. These rewards incentivize both truthful reporting and information
acquisition, and the designer uses the reports to infer the hidden state. Much of this
work shares our emphasis on costly information processing (e.g., Miller et al. 2005;
Dasgupta and Ghosh 2013) and on robustness to the designer’s lack of knowledge
(e.g., Shnayder et al. 2016; Kong and Schoenebeck 2019).

Although there are many similarities, peer prediction di"ers from preference
elicitation in two fundamental ways.

1. There is no product to allocate, or decision to make.

In peer prediction, the designer can solicit messages4 and set transfers 0. He
typically does not allocate a payo"-relevant alternative 𝜛. In our setting, the
allocation is essential. We cannot study revealed preference without a product
to consume, or social choice without a measure that impacts the population.

2. Participants are learning about the same thing.

In peer prediction, a designer encourages many participants to learn about the
same object – the hidden state. For example, in peer grading, several students
review the same assignment. In our setting, the designer would like each
participant to learn about their own preferences. So, unless preferences are
homogeneous, every participant is learning about a di"erent object.

In light of these di"erences, neither negative results nor positive results necessarily
translate from one problem to another. On the one hand, the fact that our designer
can make allocations makes elicitation easier. On the other hand, the fact that each of
our participants are learning about di"erent things makes elicitation harder.

In addition to these fundamental di"erences, there are two notable modeling
di"erences. First, we deal with multiple equilibria di"erently. Peer prediction
mechanisms typically have what we call “unreasonably bad” equilibria, which violate
weak elicitation, even after restricting attention to participant-optimal equilibria (e.g.,
Dasgupta and Ghosh 2013). They also have uninformative equilibria, which violate
strong elicitation, and these equilibria sometimes arise in practice (Gao et al. 2014).
Second, we only make mild assumptions on how participants acquire information.
Most results on peer prediction make strong assumptions on how participants acquire
information. Relaxing those assumptions can change the results (Gao et al. 2019).
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It is also worth clarifying how our BDM-with-betting mechanism di"ers from
peer prediction mechanisms. BDM-with-betting asks each participant to (i) report her
willingness to pay for a product, and (ii) to predict the average reported willingness to
pay of other participants. Here, (i) incentivizes truthful reporting and (ii) incentivizes
information acquisition. In particular, truthful reporting is optimal regardless of what
the other participants do. A typical peer prediction mechanism asks each participant
to report her signal realization; she earns money if her reports are correlated with the
reports of other participants. Here, truthtelling incentives are more complicated;
participants only want to be truthful if other participants are also truthful.

Finally, two innovative papers use crowdsourcing to accomplish goals very much
like our own: designing mechanisms that are robust to the possibility that agents do
not know their own preferences. Schoenebeck and Tao (2021) study social choice.
Pakzad-Hurson (2022) studies a more general setting. Interestingly, these papers do
not need to assume that voters can learn their values in order to achieve e#ciency.
Unfortunately, we cannot adapt their mechanisms to our setting, for three reasons.
First, they study particular information structures. Second, they assume agents learn
about a common state. Third, they either focus on favorable equilibria or need
stronger assumptions to rule out unfavorable equilibria.

Mechanism Design with Information Acquisition. We build on the literature
on mechanism design with information acquisition. Much of this work focuses on
di"erent applications, like auctions (e.g., Persico 2000; Bergemann et al. 2009),
matching (e.g., Immorlica et al. 2020), and settings with veri!able information (e.g.,
Ben-Porath et al. 2024). We are especially motivated by two negative results. First,
Bergemann and Välimäki (2002) !nd that e#cient mechanisms may not exist when
information is costly and preferences are correlated. Second, Pei and Strulovici (2024)
!nd that planners with su#ciently-imprecise knowledge of preferences and the costs
of information can only implement trivial social choice rules.

Our work both applies and contributes to this literature. Speci!cally, it further
develops applications to preference elicitation and social choice. It also proposes a
model of unstructured information acquisition and insists on mechanisms that are
robust to the details of how agents acquire information. We draw heavily from prior
work in mechanism design that insists on robustness to unknown production or
information acquisition technologies (e.g., Carroll 2015; Carroll 2019). Relative to this
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work, we focus on a particular known technology: the revealing signal that allows an
agent to learn her own value, but not necessarily anything else. We also build on work
on unstructured information acquisition in games (e.g., Denti and Ravid 2024), which
relies on very natural assumptions that happen to be di"erent from ours.

Interestingly, some prior work highlights how incentives to learn about others
can actually undermine e#ciency (Pernoud and Gleyze 2024) and strategic simplicity
(Gleyze and Pernoud 2023). In contrast, we obtain e#cient social choice only after
explicitly incentivizing agents to learn about each other. Moreover, this simpli!es the
agents’ problem insofar as it restores incentives to report truthfully.

Voting and Social Choice. The literature on voting, and social choice more
generally, has studied voter information both empirically and theoretically.

On the empirical side, the literature establishes several stylized facts that
motivate our interest in social choice with costly information processing.

1. Many voters are poorly informed.

There are many poorly-informed voters, and better-informed voters are not
demographically or ideologically representative of the electorate (e.g., Palfrey
and Poole 1987; Delli Carpini and Keeter 1996; Angelucci and Prat 2024).

2. Voters respond to information.

In experiments, giving publicly-available information to voters can a"ect how
they vote (e.g., Lau and Redlawsk 1997; Fowler and Margolis 2014), and people
with di"erent ideologies respond to information in similar ways (e.g., Coppock
2023). In practice, well-informed voters vote di"erently than poorly-informed
ones, controlling for observable characteristics (e.g., Bartels 1996; Gilens 2001).

3. Voter respond to incentives to acquire information.

There is some evidence that voters trade-o" the costs of processing information
with the instrumental value of that information (e.g., Larcinese 2009; Shineman
2018). Moreover, in surveys, participants’ political knowledge responds to
monetary incentives (e.g., Prior and Lupia 2008).

4. Increasing voter information has bene!ts.

More informed electorates are better at identifying low-quality o#cials and
removing them from o#ce (see e.g., Pande 2011 and references therein).
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On the theoretical side, we build on a line of work on combating uninformed
voting (e.g., Persico 2004; Gerardi and Yariv 2008; Gershkov and Szentes 2009; Cai
2009; Tyson 2016). Relative to this work, we consider a much more powerful planner
and obtain e#ciency results under much weaker assumptions. Speci!cally, our
planner has unlimited access to transfers. In return, we allow general forms of
heterogeneity, correlation, and information acquisition. We also do not require the
planner to have any prior knowledge. In a sense, Assumption 5 bridges our approach
with that of prior work. It motivates a more practical mechanism – i.e., one that does
not involve vote buying – in a more stylized model.

We also build on research that studies voting behavior when information is costly
(e.g., Martinelli 2006; Feddersen and Sandroni 2006) or imperfect (e.g., Feddersen and
Pesendorfer 1996; Jaehoon Kim and Fey 2007; Battaglini et al. 2010; Bhattacharya
2013; Ali et al. 2025). Some of this work predicts a swing voter’s curse, where
poorly-informed voters abstain or appear to vote against their own interests, which is
empirically supported by Battaglini et al. (2010). Relative to this work, we identify
mechanisms that alleviate the swing voter’s curse in all equilibria, and encourage
voter informedness in favorable equilibria.

Finally, we are motivated by research on sortition, as well as minipublics and
citizen’s assemblies (e.g., Dahl 1989; Fishkin 2011). As in our model, sortition
involves random sampling of voters drawn from a broader electorate. This practice
raises a number of important political, economic, and computational questions that
other work explores (e.g., Flanigan et al. 2021; Bardhi and Bobkova 2023).

7 Conclusion

Revealed preference plays a foundational role in economics, by linking observed
choices with unobserved preferences. This link is disrupted when people !nd it costly
to process information about the goods they consume, the services they receive, and
the policies that a"ect them. We ask whether it is possible to repair that link. That is,
we ask whether observed choices, in any possible mechanism and from arbitrarily
many individuals, can identify the distribution of preferences in a population.

We !nd that it is not possible to fully restore the link between choices and
preferences when processing information is costly (Theorem 1). It is possible to
partially restore the link (Theorem 2), and that may be enough for some applications
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(Theorem 3). For other applications, it may be possible to obtain informative bounds
on statistics that are relevant to those applications. But it is clear that choices cannot
reveal preferences at the same level of generality and precision as classical theory
suggests (e.g., Becker et al. 1964; Clarke 1971).

Readers may object to our emphasis on informed preferences, rather than
uninformed preferences. After all, as long as people are uninformed, it is their
uninformed preferences that govern their behavior. But revealed preference is not
only used to predict behavior, it is also used to measure welfare. When structural
models are used to guide policy decisions, or theoretical models are used to motivate
particular markets, it would be a mistake to equate welfare with people’s uninformed
preferences. Even if the goal is to predict behavior, informed preferences matter for
many applications (e.g., estimating long-run demand for a product).

Naturally, our results have weaknesses that may limit their practical relevance.
For example, the researcher in our model can recruit an unlimited number of
individuals and spend an unlimited amount of money. This strengthens our negative
results, but weakens our positive results. In addition, we rely on Bayes-Nash
equilibrium, a solution concept that is quite strong and often leads to unrealistic
conclusions. Finally, our results are entirely theoretical. We do not provide empirical
evidence that mechanisms like BDM-with-betting work in practice.

Nonetheless, we believe that further work that addresses these weaknesses could
have broad practical relevance. In particular, there are many institutions where costly
information processing can lead to market failures (e.g., elections), and many
institutions that exist in part to correct such market failures (e.g., reputation and
recommender systems). Understanding and addressing these market failures may
ultimately require methods for eliciting informed preferences.

A Proof Outlines

A.1 Proof of Theorem 1

We split the proof of Theorem 1 into two cases, based on whether the 6-statistic is
a#ne or not. The advantage to handling these cases separately is that we can obtain
the negative result in Theorem 2 without much additional e"ort (see Corollary 1).
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A.1.1 Non-A"ne Statistics

Suppose there is a non-a#ne 6-statistic that is strongly elicitable, and let (x𝜔, t𝜔) be a
sequence of mechanisms that strongly identi!es it. The following claim will be useful.

Claim 1. For every < > 0, there exist constants 𝐺, ≨ ϑ ℝ where 𝐺 ⨎ ≨ ⨎ 𝐺 + < and

6 ⦆𝐺 + ≨
2 [ ∳ 6(𝐺) + 6(≨)

2 (10)

We construct two joint distributions ℷ and ℷ± that the planner must be able to
distinguish if the 6-statistic is identi!ed. There are three steps to this construction.

1. Consider two basic instances ⊲ and ⊲± whereϖ = {1, 2} and ∲ = {𝐺, ≨, (𝐺 + ≨))2}.
With probability one, the state is 𝛻 = 1. Let the cost of the good signal given the
good technology be ℸ(ℵ1𝜀 , ℶ1𝜀 ) = ⋆ℸ > 0.

2. Construct a joint distribution ℷ for basic instance ⊲ as follows. Let agent 𝜀 have
the bad technology with probability 9 ϑ (0, 1). Let values be drawn according to

𝜗𝜀 + 𝐺 + (≨ ω 𝐺) ⋜ B’%!$())"(0.5)

Note that the expected value 𝜗𝜀 and 6-statistic are

Eℷ[𝜗𝜀] =
𝐺 + ≨
2 and Eℷ[6(𝜗𝜀)] =

6(𝐺) + 6(≨)
2

3. Construct another joint distribution ℷ± for basic instance ⊲± as follows. Agents
have the good technology with probability one. Let values be drawn according to

Prℷ±\𝜗𝜀 =
𝐺 + ≨
2 ( = 9 and Pr[𝜗𝜀 = 𝐺] = Pr[𝜗𝜀 = ≨] = 1 ω 9

2

Note that the expected value 𝜗𝜀 and 6-statistic are

Eℷ±[𝜗𝜀] =
𝐺 + ≨
2 and Eℷ±[6(𝜗𝜀)] = (1 ω 9) ⋜ 6(𝐺) + 6(≨)

2 + 9 ⋜ 6 ⦆𝐺 + ≨
2 [

Critically, the 6-statistic takes on a di"erent value when the joint distribution is ℷ
relative to when it is ℷ±. It follows that a planner who can identify the 6-statistic can
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also distinguish between joint distributions ℷ and ℷ±. Accordingly, our goal is to show
that the planner cannot distinguish between joint distributions ℷ and ℷ±.

Lemma 1. Set < > 0 su#ciently small. For any mechanism (x, t), there exists a pair of
strategy pro!les (s,m) and (s±,m±) where:

1. Given instance ⊲, (s,m) is an equilibrium.

2. Given instance ⊲±, (s±,m±) is an equilibrium.

3. Consider message pro!les4 and4±, de!ned as

4𝜀 = m𝜀 (s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀))
4±

𝜀 = m±
𝜀
⌋
s±𝜀 , s±𝜀(𝛻, ℵ𝜀, 𝜗𝜀)

⌈

The distribution of4 given joint distribution ℷ is the same as the distribution of4±

given joint distribution ℷ±.

Lemma 1 ensures that, with suitable equilibrium selection, the data has the same
distribution regardless of whether the joint distribution is ℷ or ℷ±. In turn, the
estimate 𝐻 is identically-distributed in both cases. This leads to a contradiction, as
follows. Strong identi!cation requires that

𝐻 →9 Eℷ[6(𝜗𝜀) ( 𝛻] and 𝐻 →9 Eℷ±[6(𝜗𝜀) ( 𝛻] (11)

However, by construction, the 6-statistic takes on a di"erent value for distributions ℷ
and ℷ±. That is,

Eℷ[6(𝜗𝜀) ( 𝛻] ∳ Eℷ±[6(𝜗𝜀) ( 𝛻] (12)

Together, conditions (11) and (12) imply that the estimate 𝐻 converges to two
di"erent quantities. This is a contradiction.

It also follows from this construction that non-a#ne statistics are not weakly
elicitable. This is the second part of Theorem 2.

Corollary 1. If 6 is non-a#ne, then the 6-statistic is not weakly elicitable.

Proof. The no-information benchmark for instances ⊲ and ⊲± are

Varℷ[E[6(𝜗𝜀) ( 𝛻]] = Varℷ±[E[6(𝜗𝜀) ( 𝛻]] = 0
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This follows from the fact that 𝛻 = 1 with probability one. Therefore, satisfying the
no-information benchmark means that the estimate must converge to the 6-statistic in
every equilibrium, for both instance ⊲ and ⊲±. We have shown that is not the case.

A.1.2 A"ne Statistics

Suppose there is a non-constant a#ne statistic that is strongly elicitable, and let
(x𝜔, t𝜔) be a sequence of mechanisms that strongly identi!es it. Since the statistic is
non-constant, there must be some values 𝐺, ≨ ϑ ℝ such that 6(𝐺) ∳ 6(≨).

Consider a basic instance ⊲±± with state space ϖ = {𝐺, ≨} and value space

∲ = {𝐺, ≨, (𝐺 + ≨))2}

Let 9 ϑ (0, 1) be the probability that agent 𝜀 has the good technology. Let agents with
the good technology have value 𝜗𝜀 = U!"#$%&{𝐺, ≨}. Let agents with the bad
technology have value 𝜗𝜀 = 𝛻. Let the cost of the good signal given the bad technology
be ⋆ℸ > 7𝜗. Note that the 6-statistic has value

9 ⋜ 6 ⦆𝐺 + ≨
2 [ + (1 ω 9) ⋜ 6(𝛻)

Moreover, it varies with 𝛻, since 6(𝐺) ∳ 6(≨).
Recall the basic instance ⊲± from earlier in this proof outline. Rede!ne the

parameters 𝐺, ≨, ⋆ℸ,9 to match those of the basic instance ⊲±±. Note that the value of the
6-statistic does not vary with 𝛻, since 𝛻 = 1 with probability one.

Claim 2. There exists an equilibrium (s±±,m±±) of the mechanism for instance ⊲±± where
the value of the 6-statistic does not vary with 𝛻.

It follows from this claim that the 6-statistic is not strongly identi!ed.

A.2 Special Cases of Theorem 2

We work through Theorem 2 in three examples, before outlining the general proof in
Section A.3. These examples are intended to build intuition for how and when
BDM-with-betting elicits (or weakly elicits) the average.

In these examples, we maintain three conventions. First, as in Section 2, we
assume there are two alternatives: an outside option with value zero and a product
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with value 𝜗𝜀 to agent 𝜀. Second, we temporarily drop the requirement that the value
space ∲ must be !nite. Third, we always focus on the limit as both the sample size
and the betting stakes grow (i.e., 𝜔 →ε and 𝐴𝜔 →ε).

A.2.1 Elicitation without an InformedMinority

The !rst example illustrates that there are natural instances, which violate the
informed minority condition, where BDM-with-betting has a unique equilibrium.
This stands in contrast to the example in Section 4.2, which had multiple equilibria.

Example 1. Fix a instance where the state represents product quality, i.e.,

𝛻 + B’%!$())" (0.5)

Each agent 𝜀’s value 𝜗𝜀 is positively correlated with the state, i.e.,

𝜗𝜀 + 𝐵(𝛻, 1)

Each agent 𝜀 has a technology that represents a noisy assessment of the state, i.e.,

ℵ𝜀 + B’%!$())" ⦆1 + 𝛻
3 [

Each agent 𝜀 has access to a revealing signal ℶ𝐸𝜀 that costs 7ℸ, where

ℶ𝐸(𝛻, ℵ𝜀, 𝜗𝜀) = (𝜗𝜀, ℵ𝜀)

and an uninformative signal ℶ⊳𝜀 that costs nothing and only reveals the technology, i.e.,

ℶ⊳𝜀 (𝛻, ℵ𝜀, 𝜗𝜀) = ℵ𝜀

The unique equilibrium that survives asymptotically sets

∓𝜀 = 1,… ,𝜔 ς s𝜀 (ℵ𝜀, ℸ𝜀) = ℶ𝜀 and m𝜀(ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀), ℵ𝜀, ℸ𝜀) = 𝜗𝜀

That is, all agents 𝜀 acquire the revealing signal and report their values 𝜗𝜀.
This equilibrium is unique because acquiring the revealing signal always helps

agents predict the average reported value. To see this, consider two extreme cases.
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First, if agents 𝜕 ∳ 𝜀 acquire the informative signal, the average reported value is

⋆𝜗𝜀 =
1

𝜔 ω 1
⟨

𝜕∳𝜀
>𝜗𝜕 =

1
𝜔 ω 1

⟨

𝜕∳𝜀
𝜗𝜕 →9 𝛻

Second, if agents 𝜕 ∳ 𝜀 acquire the uninformative signal, the average reported value is

⋆𝜗𝜀 =
1

𝜔 ω 1
⟨

𝜕∳𝜀
>𝜗𝜕 =

1
𝜔 ω 1

⟨

𝜕∳𝜀
E
❳
𝜗𝜕 ( ℵ𝜕

/
→9

4 + 𝛻
9

In both cases, the more that agent 𝜀 learns about the state 𝛻, the more accurately she
is able to predict the average reported value ⋆𝜗𝜀. Moreover, she can learn more about
the state 𝛻 by acquiring her revealing signal; this reveals her value 𝜗𝜀, which is
correlated with 𝛻. As long as the scaling parameter 𝐴𝜔 is su#ciently large compared
to the cost 7ℸ, agent 𝜀 is better o" acquiring the revealing signal.

In this example, the average reported value identi!es the population’s average
value because every agent 𝜀 learns her value 𝜗𝜀. Next, we consider an example where
the same holds even though no agent learns her value 𝜗𝜀 perfectly.

A.2.2 Elicitation with Partial Information Acquisition

The second example illustrates why BDM-with-betting remains e"ective if agents
have access to multiple signals. In particular, we consider what happens if agents
react to betting incentives by learning about others’ values rather than their own.

Example 2. The instance is the same as in Example 1, except that agents have access to
two additional signals. First, there is a product quality signal ℶ𝐼𝜀 that costs 7ℸ)2 and
reveals the state 𝛻, i.e.,

ℶ𝐼𝜀 (𝛻, ℵ𝜀, 𝜗𝜀) = (𝛻, ℵ𝜀)

Second, to satisfy Assumption 2, there is a combined signal ℶ𝐽𝜀 that costs 3 7ℸ)2, i.e.,

ℶ𝐽𝜀 (𝛻, ℵ𝜀, 𝜗𝜀) = (𝛻, ℵ𝜀, 𝜗𝜀)

The unique equilibrium that survives asymptotically sets

∓𝜀 = 1,… ,𝜔 ς s𝜀 = ℶ𝐼𝜀 and m𝜀(s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)) = 𝛻
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Here, agents 𝜀 do not learn their own values 𝜗𝜀. They prefer the quality signal ℶ𝐼𝜀 to the
revealing signal ℶ𝐸𝜀 and the combined signal ℶ𝐽𝜀 . All three signals are equally good at
predicting the vote margin, but the quality signal costs the least. Nonetheless, the
average reported value equals the population’s average value, since

1
𝜔

𝜔⟨

𝜕=1
>𝜗𝜕 =

1
𝜔

𝜔⟨

𝜕=1
E
❳
𝜗𝜕 ( ℵ𝜕,𝛻

/
= 𝛻 = E[𝜗𝜀 ( 𝛻]

Examples 1 and 2 both have a symmetric pure-strategy equilibrium. Next, we
consider an example where that is not the case.

A.2.3 Elicitation with Mixed-Strategy Equilibria

The third example illustrates how unstable best response dynamics can lead to
mixed-strategy equilibria. The best response function is unstable in the sense that, as
other agents 𝜕 acquire more information, agent 𝜀 wants to acquire less information.
This is contrary to the intuition from the example in Section 4.2, where the incentive
to acquire information is strongest when other agents also acquire information.

Example 3. The instance is the same as in Example 1, with two changes. First, agent 𝜀’s
value 𝜗𝜀 is no longer correlated with the state, i.e.,

𝜗𝜀1 + U!"#$%&[ω2, 2 + 2𝐾]

where 𝐾 ϑ ℝ is a constant. Second, agent 𝜀’s technology ℵ𝜀 provides information about
both her value 𝜗𝜀 and the state 𝛻, i.e.,

ℵ𝜀 = 1 (𝜗𝜀 > 1 ω 2𝛻)

Here, the state 𝛻 no longer represents quality. Instead, it controls whether the
agents’ uninformative signal is biased in favor of the product (𝛻 = 1) or not (𝛻 = 0).
Each agent 𝜀 either receives “good news” (ℵ𝜀 = 1), or “bad news” (ℵ𝜀 = 0).

In any symmetric pure strategy pro!le, each agent 𝜀 prefers to become informed if
and only if other agents are not informed. To see this, consider two cases.
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1. If agents 𝜕 ∳ 𝜀 acquire the revealing signal ℶ𝐸𝜕 , the average reported value is

⋆𝜗𝜀 =
1

𝜔 ω 1
⟨

𝜕∳𝜀
>𝜗𝜕 =

1
𝜔 ω 1

⟨

𝜕∳𝜀
𝜗𝜕 →9 𝐾

Since the parameter 𝐾 is common knowledge, agent 𝜀 does not need to acquire
the revealing signal ℶ𝐸𝜀 in order to predict the vote margin. She prefers to deviate
to the uninformative signal ℶ⊳𝜀 , which costs less.

2. If agents 𝜕 ∳ 𝜀 acquire the uninformative signal ℶ⊳𝜕 , the average reported value is

⋆𝜗𝜀 =
1

𝜔 ω 1
⟨

𝜕∳𝜀
>𝜗𝜕 =

1
𝜔 ω 1

⟨

𝜕∳𝜀
E
❳
𝜗𝜕 ( ℵ𝜕

/
→9

⌉
]
{
]
}

𝐾2+2𝐾ω2
𝐾+4

𝛻 = 0

𝐾2+6𝐾+2
𝐾+4

𝛻 = 1

When 𝐴𝜔 is su#ciently large, agent 𝜀 prefers to acquire the revealing signal,
which is correlated with 𝛻 and therefore helps her predict the vote margin.

However, there is an equilibrium in mixed strategies. In that equilibrium, agents
acquire the informative signal with high probability and the uninformative signal
with low probability. Intuitively, the minority of uninformed agents is large enough to
a"ect the average reported value (but just barely). The remaining agents are willing to
acquire information to predict what this uninformed minority will report (but again,
just barely). The size of the uninformed minority needed to incentivize information
acquisition is decreasing as the betting stakes grow (𝐴𝜔 →ε). Asymptotically, the
uninformed minority vanishes as a fraction of the sample size, and the average
reported value converges to the population’s average value.

In this example, characterizing the mixed-strategy equilibrium is straightforward
because there are only two signals, and they are common to all agents. When many
signals are available, strategies are complicated and high-dimensional, which makes
constructing mixed-strategy equilibria quite di#cult. We overcome this di#culty
with a non-constructive approach to proving Theorem 2.
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A.3 Proof of Theorem 2

We outline the proof of Theorem 2. We focus on the positive result, since the negative
result follows immediately from Corollary 1. After describing the sequence of
mechanisms in more detail, we introduce key notation and su#cient conditions for
weakly identifying the population’s average value. Lemmas 2-4 verify those su#cient
conditions. Corollary 2 handles the no-information benchmark.

Let each mechanism (x𝜔, t𝜔) be a BDM-with-betting mechanism where the
proper scoring rule is a simple extension of the continuous ranked probability score.
More precisely, the scoring rule is

SR (≨𝜀, ⋆𝜗𝜀) = 7𝜗𝐿 ω
𝐿⟨

𝜛=1
⨐
[0, 7𝜗]

⌋
Pr≨𝜀[ ⋆𝜗𝜀𝜛 ⨎ 𝑀] ω 1( ⋆𝜗𝜀𝜛 ⨎ 𝑀)

⌈2 𝑁𝑀

Note that we apply the continuous ranked probability score separately, for each
alternative 𝜛, to the marginal distribution of the average reported value ⋆𝜗𝜀𝜛. The
overall score is the sum of the scores associated with each alternative 𝜛.

A.3.1 Notation and Su"cient Conditions

We begin by introducing key notation and !nding su#cient conditions for weakly
identifying the population’s average value.

Let agent 𝜀’s error be the di"erence between her true and expected values, i.e.,

<𝜀 = 𝜗𝜀 ω E[𝜗𝜀 ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)]

Since the BDMmechanism incentivizes truth-telling, her reported value is

>𝜗𝜀 = E[𝜗𝜀 ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)] = 𝜗𝜀 ω <𝜀

The average error is the di"erence between the average value and the average reported
value (across all agents). That is,

1
𝜔

𝜔⟨

𝜀=1
<𝜀

𝑂 𝑃𝑄
average error

= 1
𝜔

𝜔⟨

𝜀=1
𝜗𝜀

𝑂 𝑃 𝑄
average value

ω 1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀

𝑂 𝑃 𝑄
average reported value
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If the average error is small, the alternative will be nearly optimal.
In the limit as the sample size 𝜔 grows, the average error, average value, and

average reported value converge in probability:

1
𝜔

𝜔⟨

𝜀=1
<𝜀 →9 E[<𝜀 ( 𝛻]

1
𝜔

𝜔⟨

𝜀=1
𝜗𝜀 →9 E[𝜗𝜀 ( 𝛻]

1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀 →9 E[ >𝜗𝜀 ( 𝛻] (13)

These averages converge in probability to expectations E[⋜ ( 𝛻] conditional on the
realized state 𝛻. This follows from the fact that the variables <𝜀, 𝜗𝜀, >𝜗𝜀 are conditionally
i.i.d., which allows us to invoke the law of large numbers after conditioning on 𝛻.

For convenience, we often refer to the probability limits (13) as the average error,
average value, and average reported value, respectively.

To show that the alternative is nearly optimal, it is su#cient to show that the
average error vanishes, i.e.,

E[<𝜀 ( 𝛻]→9 0 (14)

which ensures that the average reported value converges to the average value. But, as
we saw in Example 2, it is not critical that the individual errors vanish. As long as the
errors <𝜀 are uncorrelated across participants 𝜀, the average error will vanish. This is
why BDM-with-betting works even though it does not directly incentivize participants
to learn about their own values: it really only needs to incentivize participants 𝜀, 𝜕 to
acquire information up to the point where their errors <𝜀, <𝜕 are uncorrelated.

To show that the average error vanishes (14), it su#ces to show that

Cov[<𝜀,E[ >𝜗𝜀 ( 𝛻]]→ 0 and Cov
❳
<𝜀,E

❳
𝜗𝜕 ( 𝛻

//
→ 0 (15)

Intuitively, if the error <𝜀 is neither correlated with the average reported value
E[ >𝜗𝜀 ( 𝛻], nor with the average value E

❳
𝜗𝜕 ( 𝛻

/
, then it cannot be correlated with the

average error
E
❳
<𝜕 ( 𝛻

/
= E

❳
𝜗𝜕 ( 𝛻

/
ω E[ >𝜗𝜀 ( 𝛻]

If <𝜀 is not correlated with the average error, then it must not be correlated with the
errors <𝜕 of other participants 𝜕. As we just discussed, this ensures that the average
error vanishes.
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A.3.2 Verifying Su"cient Conditions

We verify the su#cient conditions for eliciting the average, in three lemmas. First, we
show that errors <𝜀 cannot be too correlated with the average reported value E[ ⋆𝜗𝜀 ( 𝛻].

Lemma 2. In any equilibrium of the mechanism (x𝜔, t𝜔), the covariance between the
error <𝜀,𝜔 and conditional expectation E

❳
⋆𝜗𝜀,𝜔 ( 𝛻

/
is bounded, i.e.,

⟦⟦⟦⟦Cov
❳
<𝜀,𝜔,E

❳
⋆𝜗𝜀,𝜔 ( 𝛻

//⟦⟦⟦⟦ = 𝑅 ) 1⟧
𝐴𝜔
⦅

Lemma 2 follows from the fact that participant 𝜀 wants to acquire any signal that
helps her better predict the average reported value E

❳
>𝜗𝜕 ( 𝛻

/
. Suppose that, for the

sake of contradiction, her error <𝜀 is correlated with the average reported value. Then,
if there were a signal that revealed her error <𝜀, she would want to acquire it. However,
this signal exists. By Assumptions 2 and 3, 𝜀 can combine her revealing signal (which
reveals 𝜗𝜀) with the signals that she has already acquired (which determine >𝜗𝜀). This
reveals her error <𝜀 = 𝜗𝜀 ω >𝜗𝜀 and costs at most 7ℸ more than the signals she already
acquired. This combination is a pro!table deviation whenever the scaling parameter
𝐴𝜔 is large relative to the cost 7ℸ. That, in turn, contradicts the premise that <𝜀 is
correlated with the average reported value in equilibrium.

As a corollary of Lemma 2, we !nd that our BDM-with-betting mechanism
satis!es the no-information benchmark. While this benchmark may seem trivial,
simpler mechanisms like BDMmay violate it (consider e.g., Example 3).

Corollary 2. The mechanism (x𝜔, t𝜔) satis!es the no-information benchmark.

Next, we must show that <𝜀 is not too correlated with the average value E
❳
𝜗𝜕 ( 𝛻

/
.

However, this is not true in every equilibrium. We must show that there exists an
equilibrium in which <𝜀 is not too correlated with the average value.

We take an indirect approach. For every instance, we de!ne an auxiliary instance
where, by construction, <𝜀 is not correlated with the average value. Using Lemma 2,
we show that the average error vanishes in every equilibrium of the auxiliary instance
(Lemma 3). Then we show, when 𝜔 is large, every equilibrium of the auxiliary
instance is also an equilibrium of the original instance (Lemma 4).

Essentially, the auxiliary instance forces agents to only acquire signals that are
maximally predictive of the conditional expectation E

❳
𝜗𝜕 ( 𝛻

/
.
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De!nition 17. For any given instance ⊲ = (ϖ,∲ ,ϱ,⨋,ℷ, ℸ), we de!ne an auxiliary
instance ⋆⊲ = (ϖ,∲ ,ϱ,⨋,ℷ, ⋆ℸ). There are three steps to this construction.

1. Let 7ℶ𝜀 ϑ ⨋ be the signal that combines all other signals ℶ𝜀 ϑ ⨋ that have !nite cost
ℸ (ℶ𝜀, ℵ𝜀) <ε for all technologies ℵ𝜀 in the support of ℷ.7

2. We can evaluate a given signal ℶ𝜀 by how well it predicts average value E
❳
𝜗𝜕 ( 𝛻

/
.

Let predictiveness be the maximum expected score when agent 𝜀 acquires ℶ𝜀, i.e.,

𝑆(ℶ𝜀) = E⌊max
≨𝜀

E
⟫
SRCRPS (≨𝜀,E[𝜗𝜀 ( 𝛻]) ( ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)

❲
⌋ (16)

3. For any given technology ℵ𝜀 ϑ ϱ, let every signal ℶ𝜀 that is less predictive than the
combined signal 7ℶ𝜀 have in!nite cost according to the auxiliary cost function ⋆ℸ. Let
other signals cost the same as in the original cost function ℸ. More precisely,

⋆ℸ(ℵ𝜀, ℶ𝜀) =
⌉
{
}

ε 𝑆 (ℵ𝜀, ℶ𝜀) < 𝑆 (ℵ𝜀, 7ℶ𝜀)
ℸ(ℵ𝜀, ℶ𝜀) otherwise

(17)

In Lemma 3, we show that the average error vanishes in every equilibrium of the
auxiliary instance.

Lemma 3. Fix the auxiliary instance. For any sequence of equilibria (s𝜔,m𝜔) of the
mechanisms (x𝜔, t𝜔), the average reported value converges in probability to the
population’s average value.

The proof of Lemma 3 follows the logic of condition (15). Lemma 2 already that
the error <𝜀 cannot be too correlated with the average reported value E

❳
>𝜗𝜕 ( 𝛻

/
. All that

remains, by condition (15), is to show that the error <𝜀 cannot be correlated with the
average value E

❳
𝜗𝜕 ( 𝛻

/
. This is because the only signals ℶ𝜀 with !nite cost in the

auxiliary instance are those that are maximally predictive of the average value.
Suppose, for the sake of contradiction, that <𝜀 is correlated with the average value.
Then there exists another signal – which combines ℶ𝜀 with the revealing signal, and
reveals <𝜀 – that predicts the average value better than ℶ𝜀. This contradicts the premise
that ℶ𝜀 is maximally predictive.

7If signal ℶ𝜀 is itself a combined signal (Assumption 2), let 7ℶ𝜀 include all base signals that ℶ𝜀 combines.
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At this point, we have shown that the average error vanishes for all auxiliary
instances. Lemma 4 extends this result to general instances.

Lemma 4. There exists a constant𝐵 such that, for any sample size 𝜔 ⨍ 𝐵, every
equilibrium of the auxiliary instance is also an equilibrium of the original instance.

To prove Lemma 4, it is enough to show that, in the candidate equilibrium of the
original instance, no participant 𝜀 will deviate to a signal that is unavailable in the
auxiliary instance. That is, we want to show that participant 𝜀 wants to acquire only
signals that are maximally predictive of the average value E

❳
𝜗𝜕 ( 𝛻

/
. We know, in the

limit, that she will acquire only signals that are maximally predictive of the average
reported value E

❳
>𝜗𝜕 ( 𝛻

/
. Moreover, by Lemma 3, in any equilibrium of the auxiliary

instance, the average reported value converges to the average value (as the average
error vanishes). Therefore, she will only acquire signals that are maximally predictive
of the average value.

This completes the proof of Theorem 1. The proofs of Lemmas 2-4 are somewhat
involved, so we leave them to the Supplemental Appendix.

A.4 Proof of Theorem 3 (Special Case)

We outline the proof of Theorem 3 when Assumption 5 holds. We construct a
sequence of majority-rule-with-betting mechanisms (x𝜔, t𝜔) with proper scoring rule
SR, scaling parameter 𝐴𝜔 and probability parameter 𝐹𝜔. Then we show that it provides
incentives for truthful reporting and e#cient information acquisition.

First, we de!ne the proper scoring rule. Without loss of generality, let the sample
size 𝜔 be odd. Let 𝐼𝜀,𝜔 be the event that agent 𝜀 is pivotal; that is, either 𝜀 is dictator or

(𝜔 ω 1) ⋜ ⋆𝜔𝜀,𝜔 =
⟨

𝜕∳𝜀
>𝜛𝜀,𝜔 =

𝜔 ω 1
2

Let 𝑇𝜀,𝜔 be the probability of this conditional on 𝜀’s information. Let SR be the sum of a
quadratic scoring rule and a continuous ranked probability score. That is,

SR
⌋ >≨𝜀, ⋆𝜗𝜀,𝜔

⌈
= SR𝐼

𝜔
⌋ >≨𝜀,𝜔, ⋆𝜗𝜀,𝜔

⌈
+ SR𝐽𝐸𝑈𝐷 ⌋ >≨𝜀,𝜔, ⋆𝜗𝜀,𝜔

⌈

51



where SR𝐽𝐸𝑈𝐷 is de!ned as in Appendix A.3 (replacing ⋆𝜗𝜀,𝜔 with ⋆𝜔𝜀,𝜔). To de!ne SR𝐼
𝜔 , let

SR𝐼
𝜔
⌋ >≨𝜀, ⋆𝜗𝜀,𝜔

⌈
= 2 ⋜ 1(𝐼𝜀,𝜔) ⋜ >𝑇𝜀,𝜔 + 2 ⋜ 1(¬𝐼𝜀,𝜔) ⋜ (1 ω >𝑇𝜀,𝜔) ω >𝑇2𝜀,𝜔 ω (1 ω >𝑇𝜀,𝜔)2

Each of these scoring rules is convenient in di"erent parts of the proof. Since each
one is proper, the sum SR is also proper.

We do not attempt to optimize tuning parameters. Generally, it is important that
𝐹𝜔 → 0 and 𝐴𝜔 →ε. When 𝐹𝜔 vanishes quickly, agents are unlikely to be pivotal, and
𝐴𝜔 must grow even more quickly in order to ensure near-truthfulness. For the sake of
concreteness, set

𝐹𝜔 = 𝜔ω1)2 and 𝐴𝜔 = 𝜔7

The proof of Lemma 5 describes trade-o"s between these parameters in more detail.
Next, we show that these majority-rule-with-betting mechanisms are nearly

truthful. This means that each agent’s reported alternative >𝜛𝜀 probably approximately
maximizes her expected value conditional on the information she acquires.

De!nition 18. The majority-rule-with-betting mechanism (x𝜔, t𝜔) is (𝑉1,𝑉2)-truthful if
the following holds for every instance ⊲ ϑ ⨌ and equilibrium (s, >x, >b). Let agent 𝜀 report
alternative >𝜛𝜀 = >x𝜀 (s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)). Then

Pr\max
𝜀=1,…,𝜔

⟦⟦⟦⟦⟦⟦⟦
max
𝜛ϑ∱

E[𝜗𝜀𝜛 ( s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)] ω E
❳
𝜗𝜀 >𝜛𝜀 ( s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)

/⟦⟦⟦⟦⟦⟦⟦
> 𝑉1( ⨎ 𝑉2

Lemma 5 formalizes the high-level intuition in Section 5.5.

Lemma 5. The mechanism (x𝜔, t𝜔) is (𝑉1𝜔,𝑉2𝜔)-truthful, where 𝑉1𝜔 → 0 and 𝑉2𝜔 → 0.

We also prove a result analogous to Lemma 2. This says that agent 𝜀’s error <𝜀 is
uncorrelated with the vote share ⋆𝜔𝜀,𝜔.

Lemma 6. In any strategy pro!le of the mechanism (x𝜔, t𝜔) where agent 𝜀 does not have
a pro!table deviation,

⟦⟦⟦⟦Cov
❳
<𝜀,𝜔,E

❳
⋆𝜔𝜀,𝜔 ( 𝛻

//⟦⟦⟦⟦ = 𝑅
⟩
𝐴ω1)2𝜔

⟪

So far, we have not relied on Assumption 5. In particular, even if that assumption
fails, majority-rule-with-betting would alleviate the swing voter’s curse.

However, we do need Assumption 5 to show that e#cient equilibria exist. Let
𝑊 = E[𝜗𝜀]. Without loss of generality, let 𝑊 ∳ 0. There are two cases to consider.
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1. Suppose that
E
❳
(𝜗𝜀 ω 𝑊) ⋜ Pr

❳
𝜗𝜕 = 1 ( 𝛻

//
> 0

Then there exists some number 𝐵 such that, for any sample size 𝜔 ⨍ 𝐵, there is
an equilibrium where every agent 𝜀 acquires the revealing signal and reports
>𝜛𝜀 = 1(𝜗𝜀 = 1). To see this, note that the only deviation for agent 𝜀 that might be
pro!table involves acquiring the uninformative signal. Then <𝜀 = 𝜗𝜀 ω 𝑊, and

E
❳
<𝜀 ⋜ E

❳
⋆𝜔𝜀,𝜔 ( 𝛻

//
= E

❳
<𝜀 ⋜ Pr

❳
𝜗𝜕 = 1 ( 𝛻

//
= E

❳
(𝜗𝜀 ω 𝑊) ⋜ Pr

❳
𝜗𝜕 = 1 ( 𝛻

//
> 0

Since 𝐴𝜔 →ε, this eventually contradicts Lemma 6.

Finally, observe that the vote share converges to Pr[𝜗𝜀 = 1 ( 𝛻], which exceeds
50% if and only if E[𝜗𝜀 ( 𝛻] ⨍ 0. In the limit, since 𝐹𝜔 → 0, alternative 𝜛 = 1 is
chosen if and only if it maximizes welfare.

2. Suppose that
E
❳
(𝜗𝜀 ω 𝑊) ⋜ Pr

❳
𝜗𝜕 = 0 ( 𝛻

//
= 0 (18)

Observe that

E[𝜗𝜀 ( 𝛻] = Pr[𝜗𝜀 = 1 ( 𝛻] ω Pr[𝜗𝜀 = ω1 ( 𝛻]
= Pr[𝜗𝜀 = 1 ( 𝛻] ω 1 + Pr[𝜗𝜀 = 1 ( 𝛻]
= 2Pr[𝜗𝜀 = 1 ( 𝛻] ω 1

Plugging this back into inequality (18) gives us

E\(𝜗𝜀 ω 𝑊) ⋜ E[𝜗𝜀 ( 𝛻] + 1
2 ( = 0

After simplifying this expression, we obtain

Var[E[𝜗𝜀 ( 𝛻]] = 0

Therefore, E[𝜗𝜀 ( 𝛻] = 𝑊 with probability one. Furthermore, the outcome 𝜛 = 1
is e#cient if 𝑊 > 0 and ine#cient if 𝑊 < 0.
Now, consider a strategy pro!le where every agent 𝜀 acquires the uninformative
signal and optimally reports >𝜛𝜀 = 1(𝑊 = 1). Since the vote share ⋆𝜔𝜀,𝜔 does not
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depend on the state 𝛻, acquiring the revealing signal is not a pro!table
deviation. Therefore, this is an equilibrium. In this equilibrium, the chosen
alternative is 𝜛 = 1(𝑊 > 0). As we just argued, this is e#cient.

In both cases, an e#cient equilibrium exists.
All that remains is to verify that, in all equilibria, welfare is at least as high as if

the planner had chosen the ex-ante optimal alternative. Let 𝜔 be large. Continue to
assume, without loss of generality, that 𝑊 ∳ 0. In a given equilibrium, let the random
set 𝐵 include all agents that acquire the revealing signal. All agents 𝜀 ϑ 𝐵 report
>𝜛𝜀 = 1(𝜗𝜀 = 1). If this group of agents prevails in the vote, then the ex-post optimal
alternative is chosen with high probability. It follows from Lemma 5 that, with high
probability, every agent 𝜀 0 𝐵 reports >𝜛𝜀 = 1(𝑊 > 0). If this group of agents prevails in
the vote, then the ex-ante optimal alternative is chosen. Either way, the chosen
alternative is at least as good as the ex-ante optimal alternative.
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B Supplemental Appendix

We maintain the following notation. In a strategy pro!le (ℶ𝜔,4𝜔) where agent 𝜀
acquires signal ℶ𝜀, let

Pr𝜀,𝜔[⋜] = Pr[⋜ ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)]

That is, Pr𝜀,𝜔[⋜] is the probability conditioned on agent 𝜀’s information. De!ne the
expected value E𝜀,𝜔[⋜], variance Var𝜀,𝜔[⋜], and covariance Cov 𝜀,𝜔[⋜] similarly.

B.1 Proof of Theorem 3 (General Case)

We outline a proof of Theorem 3 that does not rely on Assumption 5. The high-level
intuition from Section 5.5 still applies, but now we must formalize that intuition in a
signi!cantly more general setting and using a new mechanism.

B.1.1 VCG-with-Betting Mechanism

We de!ne a new mechanism called VCG-with-betting. This mechanism is analogous
to BDM-with-betting and majority-rule-with-betting. The di"erence is that, in the
second stage, agents report their willingness to pay to the VCG mechanism. As with
majority-rule-with-betting, we also need to add some noise to the mechanism to avoid
issues that arise when agents condition on low-probability events.

The VCG-with-betting mechanism has four tuning parameters. First, there is
proper scoring rule SR, which evaluates the accuracy of agent 𝜀’s reported beliefs >≨𝜀
over the average reported value ⋆𝜗𝜀. Second, there is the scaling parameter 𝐴 that
controls how large the betting stakes are. Third, there is a probability 𝐹𝜔 that some
agent 𝜀 is chosen as dictator. Fourth, there is a randomized bias term 𝜗0,𝜔 ϑ ∲ . This
biases the mechanism towards alternatives 𝜛 where 𝜗0𝜛 is large. Let the average
reported value ⋆𝜗𝜀 include the bias term, i.e.,

⋆𝜗𝜀 =
1
𝜔
⌈
⌉
{
𝜗0,𝜔 +

⟨

𝜕∳𝜀
>𝜗𝜕
}
⦃
⦄

The agents do not know the realization of the bias term.

De!nition 19. The VCG-with-betting mechanism (x, t) is parameterized by a proper
scoring rule SR, scaling parameter 𝐴, probability 𝐹, and randomized bias term 𝜗0,𝜔. Each
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agent 𝜀 sends a message
4𝜀 =

⌋
>𝜗𝜀, >≨𝜀

⌈
ϑ [𝜗𝜍, 𝜗𝜑] φ⨏

that consists of a reported value >𝜗𝜀 and a reported belief >≨𝜀. There are two cases.

1. With probability 1 ω 𝐹, there is no dictator (𝑋 = 0). The planner selects the
alternative that maximizes the average reported value plus the bias term, i.e.,

x
⌋
>𝜗, >≨

⌈
ϑ argmax

𝜛ϑ∱
)𝜗0𝜛 +

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⦅

Each agent 𝜀 is paid according to the VCG mechanism’s transfer rule and the
proper scoring rule, i.e.,

t𝜀
⌋
>𝜗, >≨

⌈
= 𝜗0x( >𝜗, >≨) +

⟨

𝜕∳𝜀
>𝜗𝜕x( >𝜗, >≨) ωmax

𝜛ϑ𝑌

⌈
⌉
{
𝜗0𝜛 +

⟨

𝜕∳𝜀
>𝜗𝜕𝜛
}
⦃
⦄
+ 𝐴 ⋜ SR

⌋ >≨𝜀, ⋆𝜗𝜀
⌈

2. With probability 𝐹𝜔, the planner selects a random agent as dictator, i.e.,

𝑋 + U!"#$%&(1,… ,𝜔)

This agent is paid according to a BDMmechanism with random price
9 + U!"#$%& ([𝜗𝜍, 𝜗𝜑]) and the proper scoring rule, i.e.,

t𝑋
⌋
>𝜗, >≨

⌈
= 𝐴 ⋜ SR

⌋ >≨𝑋, ⋆𝜗𝑋
⌈
ω 9 ⋜ 1( >𝜗𝑋 ⨍ 9)

The other agents 𝜕 ∳ 𝑋 are according to the proper scoring rule, i.e.,

t𝜕
⌋
>𝜗, >≨

⌈
= 𝐴 ⋜ SR

⌋ >≨𝜕, ⋆𝜗𝜕
⌈

Finally, the allocation is
x𝜀
⌋
>𝜗, >≨

⌈
= 1( >𝜗𝑋 ⨍ 9)

B.1.2 Sequence of VCG-with-Betting Mechanisms

We construct a sequence
⌋
x𝜔, t𝜔

⌈
of VCG-with-betting mechanisms.

First, we introduce useful notation. Let ⋆9𝜀,𝜔 be the e"ective price of switching
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from alternative 0 to 1, i.e.,

⋆9𝜀,𝜔 = 1(𝑋 = 𝜀) ⋜ 9 + 1(𝑋 = 0) ⋜ (ω𝜔 ⋆𝜗𝜀,𝜔) + 1(𝑋 0 {0, 𝜀}) ⋜ε

Let 𝐼𝜀,𝜔 indicate the event that agent 𝜀 is potentially pivotal, i.e.,

𝜗𝜍 ⨎ ⋆9𝜀,𝜔 ⨎ 𝜗𝜑

Let 𝑇𝜀,𝜔 be the probability that agent 𝜀 is potentially pivotal, i.e.,

𝑇𝜀,𝜔 = Pr𝜀,𝜔
❳
𝐼𝜀,𝜔

/

Let >𝑇𝜀,𝜔 be the probability according to reported belief >≨𝜀,𝜔.
Second, we specify the scoring rule SR. Let SR be the sum of the quadratic

scoring rule and two continuous ranked probability scores. That is,

SR
⌋ >≨𝜀, ⋆𝜗𝜀,𝜔

⌈
= SR𝐼

𝜔
⌋ >≨𝜀,𝜔, ⋆𝜗𝜀,𝜔

⌈
+ SR𝐽𝐸𝑈𝐷 ⌋ >≨𝜀,𝜔, ⋆𝜗𝜀,𝜔

⌈
+ SR𝐽𝐸𝑈𝐷 ⌋ >≨𝜀,𝜔, 1( ⋆𝜗𝜀,𝜔 ⨍ 0)

⌈

where SR𝐽𝐸𝑈𝐷 is de!ned as in Appendix A.3, and SR𝐼 is de!ned as in Appendix A.4
(replacing ⋆𝜔𝜀,𝜔 with ⋆𝜗𝜀,𝜔). Each of these scoring rules is convenient in di"erent parts of
the proof. Since each one is proper, the sum SR is also proper.

Third, we specify the distribution of the bias term. Let 𝜗0𝜛 follow a Laplace
distribution with scaling parameter ,𝜔 > 0, i.e.,

𝜗0𝜛 + L*+)*,’ (0, ,𝜔) i.i.d. across 𝜛 ϑ ∱

The Laplace distribution ensures that agent 𝜀’s expected value conditional on the vote
margin ⋆𝜗𝜀,𝜔 is a smooth function of ⋆𝜗𝜀,𝜔.

We do not attempt to optimize these tuning parameters. Generally, it is important
that 𝐹𝜔 → 0, ,𝜔 →ε, and ,𝜔)𝜔 → 0. It is also important that 𝐴𝜔 →ε. When 𝐹𝜔
vanishes quickly, agents are unlikely to be pivotal, and 𝐴𝜔 must grow even more
quickly in order to ensure near-truthfulness. For the sake of concreteness, set

,𝜔 = 2𝑍(𝜗𝜑 ω 𝜗𝜍) ⋜ 𝜔1)2, 𝐹𝜔 = 𝜔ω1)2, 𝐴𝜔 = 𝜔7

The proof of Lemma 7 describes trade-o"s between these parameters in more detail.
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B.1.3 Convergence to E"ciency

We begin by formalizing what it means for VCG-with-betting to be nearly truthful.
Essentially, each agent’s reported values should be probably approximately equal to
her expected values (conditional on any information she has acquired).

De!nition 20. The VCG-with-betting mechanism (x𝜔, t𝜔) is (𝑉1,𝑉2)-truthful if the
following holds for every instance ⊲ ϑ ⨌ and equilibrium (s, >v, >b). Let agent 𝜀 acquire
signal ℶ𝜀 = s𝜀(ℵ𝜀, ℸ𝜀) and report values >𝜗𝜀 = >v𝜀 (ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)). Then

Pr\max
𝜀=1,…,𝜔

⟦⟦⟦ >𝜗𝜀 ω E[𝜗𝜀 ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)]⟦⟦⟦ > 𝑉1( ⨎ 𝑉2

Next, we verify that our VCG-with-betting mechanism is nearly-truthful. This is
the key step in proving Theorem 3.

Lemma 7. The mechanism (x𝜔, t𝜔) is (𝑉1𝜔,𝑉2𝜔)-truthful, where 𝑉1𝜔 → 0 and 𝑉2𝜔 → 0.

The next three lemmas are analogs Lemmas 2-4. The main di"erences are that,
rather than require truthful reporting, they only rely on nearly-truthful reporting.

Lemma 8. In any equilibrium of the mechanism (x𝜔, t𝜔),

⟦⟦⟦⟦Cov
❳
<𝜀,𝜔,E

❳
⋆𝜗𝜀,𝜔 ( 𝛻

//⟦⟦⟦⟦ = 𝑅 ) 1⟧
𝐴𝜔
⦅ and ⟦⟦⟦⟦Cov

❳
<𝜀,𝜔, 1( ⋆𝜗𝜀,𝜔 ⨍ 0)

/⟦⟦⟦⟦ = 𝑅 ) 1⟧
𝐴𝜔
⦅

Lemma 9. Fix the auxiliary instance. For any sequence of equilibria (s𝜔,m𝜔),

1
𝜔 + 1

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
→9 E

❳
𝜗𝜕 ( 𝛻

/
(19)

Lemma 10. There exists a constant𝐵 such that, for any sample size 𝜔 ⨍ 𝐵, every
equilibrium of the auxiliary instance is also an equilibrium of the original instance.

Lemmas 9 and 10 guarantee an equilibrium
⟩
s, >v𝜔, >b𝜔

⟪
where condition (19)

holds. It follows from the argmax continuous mapping theorem (Jeankyung Kim and
Pollard 1990) that the alternative x𝜔( >v𝜔, >b𝜔) converges into the set of
welfare-maximizing alternatives.

At this point, we have shown that there are good equilibria. Finally, Lemma 11
rules out unreasonably bad equilibria. It relies critically on Lemmas 7 and 8.
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Lemma 11. The mechanism (x𝜔, t𝜔) performs at least as well as the ex-ante optimal
alternative, in the limit as 𝜔 →ε and for every equilibrium. Formally, for every ⊲ ϑ ⨌,

lim sup
𝜔→ε

7.𝐷 (x𝜔, t𝜔) ⨎ OPT(⊲) ωmax
𝜛

E[𝜗𝜀𝜛]

B.2 Proof of Claim 1

First, suppose that this condition fails and 6 is continuous. Consider a small interval
[ℸ, 𝑁] 𝜚 ∲ , where “small” means that 𝑁 ω ℸ ⨎ <. By de!nition, since we cannot !nd
constants 𝐺, ≨ ϑ [ℸ, 𝑁] such that inequality (10) holds, 6 is both midpoint convex and
midpoint concave on the interval [ℸ, 𝑁]. By Jensen (1905), it follows that 6 is both
convex and concave – in other words, a#ne – on the interval [ℸ, 𝑁]. If 6 is a#ne on
every small subinterval [ℸ, 𝑁], it must (i) be di"erentiable and (ii) have a constant
derivative on the entire domain ∲ . Therefore, it is a#ne.

Second, suppose that 6 is discontinuous at 𝑁 ϑ ℝ. By De!nition 6, 6 has a !nite
discontinuity set. So, there are intervals [𝑁±, 𝑁) and (𝑁, 𝑁±±] over which 6 is continuous.
Let 𝐺 ϑ [𝑁±, 𝑁] and ≨ ϑ [𝑁, 𝑁±±]. As 𝑁±, 𝑁±± → 𝑁, either (i) lim6(𝑁±) ∳ 6(𝑁), (ii)
lim6(𝑁±±) ∳ 6(𝑁), or both. If (i), let 𝐺 = 𝑁± and ≨ = 𝑁. If (ii), let ≨ = 𝑁±± and 𝐺 = 𝑁. As
𝑁±, 𝑁±± → 𝑁, eventually ≨ ω 𝐺 ⨎ < and inequality (10) holds.

B.3 Proof of Lemma 1

We !rst discuss strategy pro!le (s,m), and then turn to strategy pro!le (s±,m±).
Let (s,m) be some equilibrium when the instance is ⊲. Let ℶ𝜀 = s𝜀 and

4𝜀 =m𝜀 (s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀))

I claim that the vector (𝜗𝜀, ℵ𝜀, ℶ𝜀,4𝜀) is independent across agents 𝜀. This follows from
three observations. First, the values 𝜗𝜀 and technologies ℵ𝜀 are independent across
agents 𝜀 after conditioning on the state 𝛻. Second, the state is 𝛻 = 1 with probability
one, so values 𝜗𝜀 and technologies ℵ𝜀 are unconditionally independent across agents 𝜀.
Third, ℶ𝜀 and4𝜀 are random functions of (𝛻, ℵ𝜀, 𝜗𝜀). The arguments are independent
across agents (since 𝛻 = 1 with probability one) and the mixing in mixed strategies is
independent across agents.

Consider the distribution of acquired signals ℶ𝜀. We claim that agent 𝜀 learns her
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value 𝜗𝜀 with probability 1 ω 9. We begin by making some observations. The good
signal is only useful to agent 𝜀 insofar as it a"ects her choice of which message4𝜀 to
send. With probability 1 ω 9, agent 𝜀 has the good technology and learns her value 𝜗𝜀
regardless of which signal she acquires. Conditional on having the bad technology,
the cost of the good signal is ⋆ℸ > 0 and the agent will only acquire it if she bene!ts
from the information that it provides. In this case, the state is !xed with probability
one, so the information is her value 𝜗𝜀. However, this information does not a"ect her
beliefs about other agents’ messages, since 𝜗𝜀 and4ω𝜀 are independent.

Suppose that agent 𝜀 acquires the good signal. Her expected cost of doing so is 9 ⋆ℸ.
We want to !nd a pro!table deviation. Consider her expected utility

⊳𝜀 (s,m, x, t) = E[5𝜀(𝜗𝜀, x𝜀(4), t𝜀(4), ℶ𝜀, ℵ𝜀)]

Recall that her value is 𝜗𝜀 ϑ {𝐺, ≨}. Suppose agent 𝜀 sends message4𝐺
𝜀 if she learns

𝜗𝜀 = 𝐺 and4≨
𝜀 if she learns 𝜗𝜀 = ≨. Then

E
❳
5𝜀(𝐺, x𝜀(4≨

𝜀 ,4ω𝜀, t𝜀(4≨
𝜀 ,4ω𝜀), ℶ𝜀, ℵ𝜀, ℸ𝜀)

/

⨍ E
❳
5𝜀(≨, x𝜀(4≨

𝜀 ,4ω𝜀, t𝜀(4≨
𝜀 ,4ω𝜀), ℶ𝜀, ℵ𝜀, ℸ𝜀)

/
ω < (20)

⨍ E
❳
5𝜀(≨, x𝜀(4𝐺

𝜀 ,4ω𝜀, t𝜀(4𝐺
𝜀 ,4ω𝜀), ℶ𝜀, ℵ𝜀, ℸ𝜀)

/
ω < (21)

⨍ E
❳
5𝜀(𝐺, x𝜀(4𝐺

𝜀 ,4ω𝜀, t𝜀(4𝐺
𝜀 ,4ω𝜀), ℶ𝜀, ℵ𝜀, ℸ𝜀)

/
ω 2< (22)

where inequalities (20) and (22) hold because the distance between 𝐺 and ≨ is at most
<, and inequality (21) holds because agent 𝜀 prefers to send message4≨

𝜀 when 𝜗𝜀 = ≨.
Now, consider the deviation where agent 𝜀 does not acquire the revealing signal and
always sends message4≨

𝜀 . She reduces her costs by 9 7ℸ and, by inequalities (20)-(22),
reduces her gains by at most 2<. This is a pro!table deviation as long as < < 9 ⋆ℸ)2.

Next, we construct a strategy pro!le (s±,m±) and show that it is an equilibrium for
instance ⊲±. Let agent 𝜀 acquire the bad signal. Since she has the good technology with
probability one, she learns here value 𝜗𝜀. Let her send messages as follows.

1. If 𝜗𝜀 = (𝐺 + ≨))2, send the same (random) message4𝜀 that an agent with the
bad technology would have sent in instance ⊲.

2. If type 𝜗𝜀 = 𝐺, send the same (random) message4𝜀 that an agent with the good
technology and value 𝜗𝜀 = 𝐺 would have sent in instance ⊲.
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3. If type 𝜗𝜀 = ≨, send the same (random) message4𝜀 that an agent with the good
technology and value 𝜗𝜀 = ≨ would have sent in instance ⊲.

That is, the three types of agents that arise in joint distribution ℷ± mimic the three
types of agents that arise in joint distribution ℷ.

To see that (s±,m±) is an equilibrium, !rst consider information acquisition.
When the joint distribution is ℷ±, agent 𝜗𝜀 knows her value perfectly, and she knows
the state 𝛻 = 1 with probability one. Therefore, there is no informational bene!t to
acquiring the good signal. The agent will always weakly prefer to acquire the bad
signal, as prescribed.

We must also show that agent 𝜀 does not want to deviate from message rulem±
𝜀 .

We rely on the following claim, which we prove later.

Claim 3. The distribution of message pro!les4± given joint distribution ℷ±, where

4±
𝜀 = m±

𝜀
⌋
s±𝜀 , s±𝜀(𝛻, ℵ𝜀, 𝜗𝜀)

⌈

is the same as the distribution of message pro!les4 given joint distribution ℷ.

Suppose that agent 𝜀 sends message ⋆4𝜀. Having acquired the bad signal, her
conditional expected utility is

Eℷ±
❳
𝜗𝜀 ⋜ x𝜀( ⋆4𝜀,4±

ω𝜀) + t𝜀( ⋆4𝜀,4±
ω𝜀) ( 𝜗𝜀

/

There are three cases to consider, corresponding to the three possible values 𝜗𝜀.

1. Suppose 𝜗𝜀 = (𝐺 + ≨))2. Then agent 𝜀’s expected utility is

Eℷ±\𝜗𝜀 ⋜ x𝜀( ⋆4𝜀,4±
ω𝜀) + t𝜀( ⋆4𝜀,4±

ω𝜀) ( 𝜗𝜀 =
𝐺 + ≨
2 (

= Eℷ±\
𝐺 + ≨
2 ⋜ x𝜀( ⋆4𝜀,4±

ω𝜀) + t𝜀( ⋆4𝜀,4±
ω𝜀)( (since ℵ𝜀 ⟥ 4±

ω𝜀)

= Eℷ\
𝐺 + ≨
2 ⋜ x𝜀( ⋆4𝜀,4ω𝜀) + t𝜀( ⋆4𝜀,4ω𝜀)( (by Claim 3)

= Eℷ[Eℷ[𝜗𝜀] ⋜ x𝜀( ⋆4𝜀,4ω𝜀) + t𝜀( ⋆4𝜀,4ω𝜀)] (by inspection of ℷ)
= Eℷ[𝜗𝜀 ⋜ x𝜀( ⋆4𝜀,4ω𝜀) + t𝜀( ⋆4𝜀,4ω𝜀)] (by LIE)

This objective is identical to the expected utility of the types in instance ⊲ with
the bad technology. Since (s,m) is an equilibrium when the joint distribution is
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ℷ, those types must (almost surely) choose a message ⋆4𝜀 that maximizes this
objective. It follows that agent 𝜀 must also choose messages ⋆4𝜀 that maximize
this objective, since she mimics those types.

2. Suppose 𝜗𝜀 = 𝐺. Then agent 𝜀’s expected utility is

Eℷ±
❳
𝐺 ⋜ x𝜀( ⋆4𝜀,4±

ω𝜀) + t𝜀( ⋆4𝜀,4±
ω𝜀) ( 𝜗𝜀 = 𝐺

/

= Eℷ±
❳
𝐺 ⋜ x𝜀( ⋆4𝜀,4±

ω𝜀) + t𝜀( ⋆4𝜀,4±
ω𝜀)
/

(since 𝜗𝜀 ⟥ 4±
ω𝜀)

= Eℷ[𝐺 ⋜ x𝜀( ⋆4𝜀,4ω𝜀) + t𝜀( ⋆4𝜀,4ω𝜀)] (by Claim 3)

= Eℷ[𝜗𝜀 ⋜ x𝜀( ⋆4𝜀,4ω𝜀) + t𝜀( ⋆4𝜀,4ω𝜀) ( 𝜗𝜀 = 𝐺] (since 𝜗𝜀 ⟥ 4ω𝜀)

This objective is identical to the expected utility of the type in instance ⊲ with
the good technology and value 𝜗𝜀 = 𝐺. That type conditions on 𝜗𝜀 = 𝐺 because
she has the good technology. Since agent 𝜀 mimics that type, we use the same
argument as in the previous case to conclude that agent 𝜀 is optimizing.

3. Suppose 𝜗𝜀 = ≨. This argument is identical to the previous case, except that we
replace 𝜗𝜀 = 𝐺 with 𝜗𝜀 = ≨.

It follows that message4±
𝜀 maximizes agent 𝜀’s expected utility.

Having shown that (s±,m±) is an equilibrium when the instance is ⊲±, the proof is
almost complete. The !nal part of Lemma 1 states that the distribution of message
pro!le4 given joint distribution ℷ is the same as the distribution of4± given joint
distribution ℷ±. This is precisely Claim 3.

B.4 Proof of Claim 2

It follows from the proof of Lemma 1 that instance ⊲± has an equilibrium where all
agents acquire the bad signal. Let agents with the good technology and value 𝜗𝜀 = 𝐺 in
instance ⊲±± mimic agents with value 𝜗𝜀 = 𝐺 in instance ⊲±. Let agents with the good
technology and value 𝜗𝜀 = ≨ in instance ⊲±± mimic agents with value 𝜗𝜀 = ≨ in instance
⊲±. Let agents with the bad technology in instance ⊲±± mimic agents with value
𝜗𝜀 = (𝐺 + ≨))2 in instance ⊲±. If all agents acquire the bad signal, we can verify (as in
Lemma 1) that these messages are best responses for each type of agent in instance ⊲±±.
Furthermore, note that these messages do not vary with the state 𝛻 (because 𝛻 = 1
with probability one in instance ⊲±). It follows from the same argument as in Lemma 1
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that, for ⋆ℸ su#ciently large, agent 𝜀’s best response is to acquire the bad signal.
Therefore, we have constructed an equilibrium for instance ⊲±± where messages do not
vary with the state 𝛻.

B.5 Proof of Claim 3

We begin by showing that the messages4𝜀 and4±
𝜀 have identical marginal

distributions. This follows from three observations.

1. Suppose the joint distribution is ℷ. With probability 9, agent 𝜀 has the bad
technology. Her message is

4𝜀 =m𝜀(s𝜀, s1𝜀 (𝛻, ℵ2𝜀 , 𝜗𝜀)) =m𝜀(ℶ2𝜀 , ℵ2𝜀 )

where the second equality follows from the facts that (i) as previously discussed,
agent 𝜀 acquires the bad signal, and (ii) ℶ2𝜀 (𝛻, ℵ2𝜀 , 𝜗𝜀) = ℵ2𝜀 .
Suppose the joint distribution is ℷ’. With probability 9, agent 𝜀’s value is
𝜗𝜀 = (𝐺 + ≨))2. By construction, her message is the same as above.

2. Suppose the joint distribution is ℷ. With probability (1 ω 9))2, agent 𝜀 has the
good technology and learns that her value is 𝜗𝜀 = 𝐺. Her message is

4𝜀 =m𝜀(s𝜀, sℵ𝜀𝜀 (𝛻, ℵ1𝜀 , 𝜗𝜀)) =m𝜀(ℶ2𝜀 , (𝛻, ℵ1𝜀 , 𝜗𝜀)) =m𝜀(ℶ2𝜀 , (1, ℵ1𝜀 , 𝐺))

Suppose the joint distribution is ℷ’. With probability (1 ω 9))2, agent 𝜀’s value is
𝜗𝜀 = 𝐺. By construction, her message is the same as above.

3. Repeat the last argument, replacing 𝜗𝜀 = 𝐺 with 𝜗𝜀 = ≨.

Furthermore, the message4±
𝜀 is independent of4±

ω𝜀, by the same argument that
showed4𝜀 is independent of4ω𝜀. Therefore, the distribution of message pro!les4±

given ℷ± is the same as the distribution of message pro!les4 given ℷ.

B.6 Proof of Lemmas 2, 6, and 8

Let ♭𝜀,𝜔 be a random variable that represents ⋆𝜗𝜀,𝜔 in Lemma 2, ⋆𝜔𝜀,𝜔 in Lemma 6, and ⋆𝜗𝜀,𝜔
and 1( ⋆𝜗𝜀,𝜔 ⨍ 0) in Lemma 8. We assume that ♭𝜀,𝜔 takes on values in the interval
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[𝑀𝜍, 𝑀𝜑], and that <𝜀,𝜔 and ♭𝜀,𝜔 are independent conditional on the state 𝛻. We begin by
introducing notation.

1. Let 7ℸ <ε be an upper bound on the cost of combined signal 7ℶ𝜀 (De!nition 17).

2. De!ne an analog ⋆𝑆𝜔 to predictiveness 𝑆 that asks how well a given signal ℶ𝜀
predicts E

❳
♭𝜀,𝜔 ( 𝛻

/
. Formally

⋆𝑆𝜔 (ℶ𝜀) = 𝐴𝜔E⌊max≨𝜀
E𝜀,𝜔

⟫
SRCRPS ⌋≨𝜀,♭𝜀,𝜔

⌈❲
⌋

This proof consists of two claims.

Claim 4. Fix a strategy pro!le where agent 𝜀 acquires a signal ℶ𝜀 where ℸ(ℵ𝜀, ℶ𝜀) <ε for
all technologies ℵ𝜀 in the support of the joint distribution ℷ. If the covariance between her
error <𝜀,𝜔 and the random variable ♭𝜀,𝜔 is positive, she can increase her expected score by
acquiring the combined signal 7ℶ. That is,

⋆𝑆𝜔 ( 7ℶ𝜀) ⨍ ⋆𝑆𝜔 (ℶ𝜀) +
𝐴𝜔

(𝜗𝜑 ω 𝜗𝜍)3
⟦⟦⟦⟦Cov

❳
<𝜀,𝜔,♭𝜀,𝜔

/⟦⟦⟦⟦
2

Proof. There are !ve steps to this proof. First, we derive a more useful expression for
agent 𝜀’s maximum expected score given signal ℶ𝜀.

⋆𝑆𝜔 (ℶ𝜀) = E⌊max
≨𝜀

E𝜀,𝜔
⟫
SRCRPS ⌋≨𝜀,♭𝜀,𝜔

⌈❲
⌋ (de!nition of ⋆𝑆𝜔)

= E⌊max
≨𝜀

E𝜀,𝜔⌊ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

⌋
Pr≨𝜀

❳
♭𝜀,𝜔 ⨎ 𝑀

/
ω 1(♭𝜀,𝜔 ⨎ 𝑀)

⌈2 𝑁𝑀⌋⌋ (defn. of SR)

= E⌊E𝜀,𝜔⌊ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

⌋
Pr𝜀,𝜔

❳
♭𝜀,𝜔 ⨎ 𝑀

/
ω 1(♭𝜀,𝜔 ⨎ 𝑀)

⌈2 𝑁𝑀⌋⌋ (SR is proper)

= ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
⟫
E𝜀,𝜔

⟫⌋
Pr𝜀,𝜔

❳
♭𝜀,𝜔 ⨎ 𝑀

/
ω 1(♭𝜀,𝜔 ⨎ 𝑀)

⌈2❲❲𝑁𝑀 (linearity)

= ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
⟫
E𝜀,𝜔

⟫⌋
E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/
ω 1(♭𝜀,𝜔 ⨎ 𝑀)

⌈2❲❲𝑁𝑀 (Pr[♮] = E[1♮])

= ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
❳
Var𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

//
𝑁𝑀 (de!nition of variance)
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Second, we derive a lower bound for agent 𝜀’s maximum expected score if she
were to deviate to the combined signal 7ℶ𝜀. Before proceeding, we reiterate two points.

1. The combined signal 7ℶ𝜀 includes the signal ℶ𝜀, because ℶ𝜀 has !nite cost for all
technologies ℵ𝜀 in the support of the joint distribution ℷ.

2. The combined signal 7ℶ𝜀 includes a revealing signal ℶ±𝜀 , which has !nite cost for all
technologies ℵ𝜀 by Assumption 3.

It follows from these two observations that if agent 𝜀 acquires 7ℶ𝜀, she will know the
value 𝜗𝜀 and the signal realization ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀). As a result, agent 𝜀 can infer <𝜀,𝜔 – the
error in her report when she only acquires signal ℶ𝜀. With that, we can proceed.

⋆𝑆𝜔 ( 7ℶ𝜀) = E⌊max
≨𝜀

E
⟫
SRCRPS ⌋≨𝜀,♭𝜀,𝜔

⌈
( 7ℶ𝜀, 7ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)

❲
⌋ (de!nition of ⋆𝑆𝜔)

⨍ E⌊max
≨𝜀

E
⟫
SRCRPS ⌋≨𝜀,♭𝜀,𝜔

⌈
( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀), <𝜀,𝜔

❲
⌋ (throwing out info.)

= E⌊max
≨𝜀

E𝜀,𝜔
⟫
SRCRPS ⌋≨𝜀,♭𝜀,𝜔

⌈
( <𝜀,𝜔

❲
⌋ (simplifying notation)

= ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
❳
Var𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

//
𝑁𝑀 (similar to earlier derivation)

= ω𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
❳
E𝜀,𝜔

❳
Var𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

///
𝑁𝑀 (LIE)

Third, we obtain a lower bound on agent 𝜀’s expected gain in score that agent 𝜀 if
she were to deviate from signal ℶ𝜀 to the combined signal 7ℶ𝜀. Combining the !rst two
parts of this proof,

⋆𝑆𝜔 ( 7ℶ𝜀) ω ⋆𝑆𝜔 (ℶ𝜀) ⨍ 𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
❳
Var𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/
ω E𝜀,𝜔

❳
Var𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

///
𝑁𝑀

(23)

= 𝐴𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E
❳
Var𝜀,𝜔

❳
E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

///
𝑁𝑀 (law of total variance)

Fourth, for any constant 𝑀, we use the conditional covariance between <𝜀,𝜔 and
1(♭𝜀,𝜔 ⨎ 𝑀) to bound the conditional variance of E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

/
.

Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/
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= E𝜀,𝜔
❳
<𝜀,𝜔

⌋
1(♭𝜀,𝜔 ⨎ 𝑀) ω E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/⌈/
(since E𝜀,𝜔

❳
<𝜀,𝜔

/
= 0)

= E𝜀,𝜔
❳
E𝜀,𝜔

❳
<𝜀,𝜔

⌋
1(♭𝜀,𝜔 ⨎ 𝑀) ω E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/⌈
( <𝜀,𝜔

//
(LIE)

= E𝜀,𝜔
❳
<𝜀,𝜔E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ω E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/
( <𝜀,𝜔

//
(linearity)

⨎
⟨
E𝜀,𝜔

⟫
<2𝜀,𝜔E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ω E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/
( <𝜀,𝜔

/
2
❲

(Jensen’s inequality)

⨎
⟩
E𝜀,𝜔

❳
(𝜗𝜑 ω 𝜗𝜍)2E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ω E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀)

/
( <𝜀,𝜔

/
2
/

(since ⟪<𝜀,𝜔⟪ ⨎ 𝜗𝜑 ω 𝜗𝜍 and E𝜀,𝜔[⋜]2 ⨍ 0)

= (𝜗𝜑 ω 𝜗𝜍)
⟨
E𝜀,𝜔

⟫⌋
E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

/
ω E𝜀,𝜔

❳
E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

//⌈2❲
(linearity)

= (𝜗𝜑 ω 𝜗𝜍)
⟩
Var𝜀,𝜔

❳
E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

//
(de!nition of variance)

Rearranging this inequality gives us

Var𝜀,𝜔
❳
E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

//
⨍ 1
(𝜗𝜑 ω 𝜗𝜍)2

Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/2 (24)

Fifth and !nally, we relax the lower bound in step 3, in terms of quantities that
appear in the claim statement. Combining inequalities (23) and (24), we obtain

⋆𝑆𝜔 ( 7ℶ𝜀) ω ⋆𝑆𝜔 (ℶ𝜀) (25)

⨍ 𝐴𝜔
(𝜗𝜑 ω 𝜗𝜍)2

⨐
[𝑀𝜍 ,𝑀𝜑]

E
❳
Cov 𝜀,𝜔

❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/2/𝑁𝑀 (combine (23) and (24))

= 𝐴𝜔
(𝜗𝜑 ω 𝜗𝜍)2

E⌊⨐
[𝑀𝜍 ,𝑀𝜑]

Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/2𝑁𝑀⌋ (linearity)

Next, focus on the term inside the expectation.

⨐
[𝑀𝜍 ,𝑀𝜑]

Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/2𝑁𝑀 = ⟫⟫⟫⟫Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/⟫⟫⟫⟫
2
2 (de!nition of 𝜍2 norm)

⨍ 1
(𝜗𝜑 ω 𝜗𝜍)

⟫⟫⟫⟫Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/⟫⟫⟫⟫
2
1

(Hölder’s inequality)

= 1
(𝜗𝜑 ω 𝜗𝜍)

)⨐
[𝑀𝜍 ,𝑀𝜑]

⟦⟦⟦⟦Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/⟦⟦⟦⟦𝑁𝑀⦅
2

(defn. of 𝜍1 norm)
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⨍ 1
(𝜗𝜑 ω 𝜗𝜍)

)⨐
[𝑀𝜍 ,𝑀𝜑]

Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/
𝑁𝑀⦅

2

(since ⟪𝑌⟪ ⨍ 𝑌)

Now, focus on the term inside the square.

⨐
[𝑀𝜍 ,𝑀𝜑]

Cov 𝜀,𝜔
❳
<𝜀,𝜔, 1(♭𝜀,𝜔 ⨎ 𝑀)

/
𝑁𝑀

=⨐
[𝑀𝜍 ,𝑀𝜑]

E𝜀,𝜔
❳
<𝜀,𝜔1(♭𝜀,𝜔 ⨎ 𝑀)

/
𝑁𝑀 (since E𝜀,𝜔

❳
<𝜀,𝜔

/
= 0)

=⨐
[𝑀𝜍 ,𝑀𝜑]

E𝜀,𝜔
❳
E𝜀,𝜔

❳
<𝜀,𝜔1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

//
𝑁𝑀 (LIE)

=⨐
[𝑀𝜍 ,𝑀𝜑]

E𝜀,𝜔
❳
<𝜀,𝜔E𝜀,𝜔

❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

//
𝑁𝑀 (linearity)

= E𝜀,𝜔⌊<𝜀,𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

E𝜀,𝜔
❳
1(♭𝜀,𝜔 ⨎ 𝑀) ( <𝜀,𝜔

/
𝑁𝑀⌋ (linearity)

= E𝜀,𝜔⌊<𝜀,𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

Pr𝜀,𝜔
❳
♭𝜀,𝜔 ⨎ 𝑀 ( <𝜀,𝜔

/
𝑁𝑀⌋ (since Pr[♮] = E[1♮])

= (𝜗𝜑 ω 𝜗𝜍)E𝜀,𝜔
❳
<𝜀,𝜔

/
ω E𝜀,𝜔⌊<𝜀,𝜔⨐

[𝑀𝜍 ,𝑀𝜑]

⌋
1 ω Pr𝜀,𝜔

❳
♭𝜀,𝜔 ⨎ 𝑀 ( <𝜀,𝜔

/⌈
𝑁𝑀⌋ (linearity)

= ωE𝜀,𝜔⌊<𝜀,𝜔⨐
[𝑀𝜍 ,𝑀𝜑]

⌋
1 ω Pr𝜀,𝜔

❳
♭𝜀,𝜔 ⨎ 𝑀 ( <𝜀,𝜔

/⌈
𝑁𝑀⌋ (since E𝜀,𝜔

❳
<𝜀,𝜔

/
= 0)

= ωE𝜀,𝜔
❳
<𝜀,𝜔E𝜀,𝜔

❳
♭𝜀,𝜔 ( <𝜀,𝜔

//
(de!nition of E[⋜])

= ωE𝜀,𝜔
❳
E𝜀,𝜔

❳
<𝜀,𝜔♭𝜀,𝜔 ( <𝜀,𝜔

//
(linearity)

= ωE𝜀,𝜔
❳
<𝜀,𝜔♭𝜀,𝜔

/
(LIE)

= ωCov 𝜀,𝜔
❳
<𝜀,𝜔,♭𝜀,𝜔

/
(since E𝜀,𝜔

❳
<𝜀,𝜔

/
= 0)

Combine this sequence of inequalities, starting with (25), to obtain

⋆𝑆𝜔 ( 7ℶ𝜀) ω ⋆𝑆𝜔 (ℶ𝜀) ⨍
𝐴𝜔

(𝜗𝜑 ω 𝜗𝜍)2
E\ 1
(𝜗𝜑 ω 𝜗𝜍)

⌋
ωCov 𝜀,𝜔

❳
<𝜀,𝜔,♭𝜀,𝜔

/⌈2(

= 𝐴𝜔
(𝜗𝜑 ω 𝜗𝜍)3

E
❳
Cov 𝜀,𝜔

❳
<𝜀,𝜔,♭𝜀,𝜔

/2/ (linearity)

= 𝐴𝜔
(𝜗𝜑 ω 𝜗𝜍)3

Cov
❳
<𝜀,𝜔,♭𝜀,𝜔

/2 (LIE and since E𝜀,𝜔
❳
<𝜀,𝜔

/
= 0)
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(26)

This, rearranged, gives us the statement of the claim.

Having established conditions under which the agent could increase her
expected score by acquiring the combined signal 7ℶ, we can limit the extent to which
those conditions hold in an equilibrium. More precisely, we argue that the covariance
between the error <𝜀,𝜔 and the random variable ♭𝜀,𝜔 cannot be too large in equilibrium.

Claim 5. In any equilibrium, the covariance between the error <𝜀,𝜔 and the conditional
expectation E

❳
♭𝜀,𝜔 ( 𝛻

/
is bounded. That is,

⟦⟦⟦⟦Cov
❳
<𝜀,𝜔,♭𝜀,𝜔

/⟦⟦⟦⟦ =
⟦⟦⟦⟦Cov

❳
<𝜀,𝜔,E

❳
♭𝜀,𝜔 ( 𝛻

//⟦⟦⟦⟦ ⨎
❲

(𝜗𝜑 ω 𝜗𝜍)3 7ℸ
𝐴𝜔

Proof. First, we study the covariance between agent 𝜀’s error <𝜀,𝜔 and ♭𝜀,𝜔. There are
two cases to consider.

1. Suppose that agent 𝜀 does not acquire the combined signal 7ℶ𝜀. Then she could
deviate from the signal ℶ𝜀 that she did acquire to 7ℶ𝜀. This will change her expected
transfers associated with the scoring rule SRCRPS from ⋆𝑆𝜔(ℶ𝜀) to ⋆𝑆𝜔 ( 7ℶ). This may
also increase her costs, but the increase will be at most 7ℸ. Putting everything
together, the fact that the deviation cannot be pro!table in equilibrium implies

⋆𝑆𝜔 ( 7ℶ𝜀) ω 7ℸ ⨎ ⋆𝑆𝜔(ℶ𝜀)

Combining this inequality with Claim 4 yields8

7ℸ ⨍ 𝐴𝜔
(𝜗𝜑 ω 𝜗𝜍)3

⟦⟦⟦⟦Cov
❳
<𝜀,𝜔,♭𝜀,𝜔

/⟦⟦⟦⟦
2

(27)

2. Suppose that agent 𝜀 acquires the combined signal 7ℶ𝜀. Then, almost surely, she
knows 𝜗𝜀 and reports >𝜗𝜀,𝜔 = 𝜗𝜀. Conditional on agent 𝜀’s information, the error
<𝜀,𝜔 is almost surely constant and so its covariance with any other random
variable is zero. Therefore, inequality (27) still holds, albeit vacuously.

8Claim 4 requires the signal ℶ𝜀 acquired by agent 𝜀 to have !nite cost for all technologies in the support
of the joint distribution ℷ, i.e., ℸ(ℵ𝜀 , ℶ𝜀) < ε. But this holds in every equilibrium; otherwise it would be
pro!table to deviate to the combined signal 7ℶ𝜀 , which has !nite expected cost.
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Second, we verify that the covariance between <𝜀 and ♭𝜀,𝜔 is equal to the
covariance between <𝜀 and the conditional expectation E

❳
♭𝜀,𝜔 ( 𝛻

/
.

Cov
❳
<𝜀𝜛,♭𝜀,𝜔

/
= E

❳
<𝜀𝜛♭𝜀,𝜔

/
(since E[<𝜀𝜛] = 0)

= E
❳
E
❳
<𝜀𝜛♭𝜀,𝜔 ( 𝛻

//
(LIE)

= E
❳
E[<𝜀𝜛 ( 𝛻]E

❳
♭𝜀,𝜔 ( 𝛻

//
(cond. independence)

= E
❳
E
❳
<𝜀𝜛E

❳
♭𝜀,𝜔 ( 𝛻

/
( 𝛻

//
(linearity)

= E
❳
<𝜀𝜛E

❳
♭𝜀,𝜔 ( 𝛻

//
(LIE)

= Cov
❳
<𝜀𝜛,E

❳
♭𝜀,𝜔 ( 𝛻

//
(since E[<𝜀𝜛] = 0)

Combining this identity with inequality (27) completes the proof.

B.7 Proof of Corollary 2

Fix an instance ⊲ ϑ ⨌, an equilibrium (s𝜔,m𝜔), and an alternative 𝜛 ϑ ∱. Let agent 𝜀
send message4𝜀 =m𝜀(s𝜀, s𝜀(𝛻, ℵ𝜀, 𝜗𝜀)). The researcher’s mean-square error is

E
⟫
(8𝜔(41,… ,4𝜔) ω E[6(𝜗𝜀) ( 𝛻])

2❲ (28)

= E
❳
/
\
)1𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛 ω E[𝜗𝜀𝜛 ( 𝛻]⦅

2(
)
⦅

(defn. of 8𝜔 and 6)

= E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
+ E

❳
/
\
)1𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⦅

2(
)
⦅
ω 2E⌊E[𝜗𝜀𝜛 ( 𝛻] ⋜

1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⌋ (linearity of E[⋜])

Focus on the third term, i.e.,

ω 2E⌊E[𝜗𝜀𝜛 ( 𝛻] ⋜
1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⌋ (29)

= ω2E⌊E[ >𝜗𝜀𝜛 ( 𝛻] ⋜
1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⌋ + 2E⌊E[<𝜀𝜛 ( 𝛻] ⋜

1
𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⌋ (defn. of <𝜀𝜛)

= ω2E[E[ >𝜗𝜀𝜛 ( 𝛻] ⋜ >𝜗𝜀𝜛] + 2E[E[<𝜀𝜛 ( 𝛻] ⋜ >𝜗𝜀𝜛] (linearity of E[⋜])
= ω2E[E[E[ >𝜗𝜀𝜛 ( 𝛻] ⋜ >𝜗𝜀𝜛 ( 𝛻]] + 2E[E[E[<𝜀𝜛 ( 𝛻] ⋜ >𝜗𝜀𝜛 ( 𝛻]] (LIE)

= ω2E[E[ >𝜗𝜀𝜛 ( 𝛻] ⋜ E[ >𝜗𝜀𝜛 ( 𝛻]] +
2
𝜔

𝜔⟨

𝜀=1
E[E[<𝜀𝜛 ( 𝛻] ⋜ E[ >𝜗𝜀𝜛 ( 𝛻]] (linearity of E[⋜])
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= ω2E
❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ 2E[E[<𝜀𝜛 ⋜ E[ >𝜗𝜀𝜛 ( 𝛻] ( 𝛻]] (linearity of E[⋜])

= ω2E
❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ 2E[<𝜀𝜛 ⋜ E[ >𝜗𝜀𝜛 ( 𝛻]] (LIE)

= ω2E
❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ 2Cov[<𝜀𝜛 ⋜ E[ >𝜗𝜀𝜛 ( 𝛻]] (since E[<𝜀𝜛] = 0)

= ω2E
❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (by Lemma 2)

Returning to the earlier expression (28), we !nd that

(28) = E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
+ E

❳
/
\
)1𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⦅

2(
)
⦅
ω 2E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (30)

= E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
+ E

❳
/
\
E
❳
/
\
)1𝜔

𝜔⟨

𝜀=1
>𝜗𝜀𝜛⦅

2

( 𝛻
(
)
⦅

(
)
⦅
ω 2E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (LIE)

Since >𝜗𝜀𝜛 depends on the equilibrium (s𝜔,m𝜔), its distribution varies with 𝜔. The weak
law of large numbers for triangular arrays ensures that 1

𝜔
⦆𝜔

𝜀=1 >𝜗𝜀𝜛 →9 E[ >𝜗𝜀𝜛 ( 𝛻].
Combining this with the continuous mapping theorem, we !nd that

(28) = E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
+ E

❳
E
❳
E[ >𝜗𝜀𝜛 ( 𝛻]2 + ♯9(1) ( 𝛻

//
ω 2E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (31)

= E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
+ E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
ω 2E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (LIE)

= E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
ω E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (32)

= E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
ω E[𝜗𝜀𝜛]2 + E[ >𝜗𝜀𝜛]2 ω E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (since E[<𝜀𝜛] = 0)

= E
❳
E[𝜗𝜀𝜛 ( 𝛻]2

/
ω E[E[𝜗𝜀𝜛 ( 𝛻]]2 + E[E[ >𝜗𝜀𝜛 ( 𝛻]]2 ω E

❳
E[ >𝜗𝜀𝜛 ( 𝛻]2

/
+ ♯(1) (LIE)

= Var[E[𝜗𝜀𝜛 ( 𝛻]] ω Var[E[ >𝜗𝜀𝜛 ( 𝛻]] + ♯(1) (defn. of Var[⋜])
⨎ Var[E[𝜗𝜀𝜛 ( 𝛻]] + ♯(1) (since Var[⋜] ⨍ 0)

Therefore, the no-information benchmark is satis!ed.

B.8 Proof of Lemmas 3 and 9

This proof consists of three claims. It uses notation from the proof of Lemmas 2 and 8.
Let agent 𝜀 acquire signal ℶ𝜀 = s𝜀(ℵ𝜀, ℸ𝜀) and report values >𝜗𝜀 = >v𝜀 (ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)). We
assume that

Pr\max
𝜀=1,…,𝜔

⟦⟦⟦ >𝜗𝜀 ω E[𝜗𝜀 ( ℶ𝜀, ℶ𝜀(𝛻, ℵ𝜀, 𝜗𝜀)]⟦⟦⟦ > 𝑉1,𝜔( ⨎ 𝑉2,𝜔 (33)
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We de!ne

⋆𝜗𝜀,𝜔 =
1
𝜔±
⌈
⌉
{
𝜗0,𝜔 +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔
}
⦃
⦄

For Lemma 3, 𝑉1,𝜔 = 𝑉2,𝜔 = 0, 𝜔± = 𝜔 ω 1, 𝜗0,𝜔 = 0, and 𝐹𝜔 = 0. For Lemma 9, de!ne
these parameters as in Appendix B.1.

We begin by showing that the cross-covariance between the error <𝜀,𝜔 and the
conditional expectation E

❳
𝜗𝜕 ( 𝛻

/
is zero. This follows by construction of the auxiliary

instance and an argument similar to Lemmas 2 and 8.

Claim 6. Consider a strategy pro!le in the auxiliary instance where agent 𝜀 acquires a
signal ℶ𝜀 with !nite expected cost, i.e., E[ ⋆ℸ(ℵ𝜀, ℶ𝜀)] <ε. Then the covariance between the
error <𝜀,𝜔 and the conditional expected values E

❳
𝜗𝜕 ( 𝛻

/
is zero, i.e.,

⟫⟫⟫⟫Cov
❳
<𝜀,𝜔,E

❳
𝜗𝜕 ( 𝛻

//⟫⟫⟫⟫ = 0

Proof. Note that the proof of Claim 4 holds verbatim if we replace ⋆𝑆𝜔 with 𝐴𝜔𝑆 and ⋆𝜗𝜀,𝜔
with E

❳
𝜗𝜕 ( 𝛻

/
. After dividing by 𝐴𝜔, the statement of that claim becomes

𝑆 ( 7ℶ𝜀) ⨍ 𝑆 (ℶ𝜀) +
1

(𝜗𝜑 ω 𝜗𝜍)3
⟫⟫⟫⟫Cov

❳
<𝜀,E

❳
𝜗𝜕 ( 𝛻

//⟫⟫⟫⟫
2

However, since the signal ℶ𝜀 has !nite expected cost according to auxiliary cost
function ⋆ℸ, it follows from the de!nition of ⋆ℸ in (17) that

𝑆 ( 7ℶ𝜀) ⨍ 𝑆 (ℶ𝜀)

Combining these two inequalities yields,

0 = 1
(𝜗𝜑 ω 𝜗𝜍)3

⟫⟫⟫⟫Cov
❳
<𝜀,E

❳
𝜗𝜕 ( 𝛻

//⟫⟫⟫⟫
2 = ⟫⟫⟫⟫Cov

❳
<𝜀,E

❳
𝜗𝜕 ( 𝛻

//⟫⟫⟫⟫

which implies the statement of the claim.

With Claims 5 and 6 in hand, we can argue that the variance of the conditional
expectation of the error cannot be too large.

Claim 7. In any equilibrium of the auxilliary instance, the variance of the conditional
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expected error is bounded, i.e.,

Var
❳
/
\
E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔 ( 𝛻

(
)
⦅

(
)
⦅
= ♯(1) and Var

❳
/
\
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

(
)
⦅
= ♯(1)

Proof. Observe that, with probability 1 ω 𝑉2,𝜔,

Var
❳
/
\
E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔 ( 𝛻

(
)
⦅

(
)
⦅

= E
❳
/
\
E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔 ( 𝛻

(
)
⦅
2()
⦅

(since E
❳
<𝜀,𝜔

/
= 0)

= E
❳
/
\
E
❳
/
\
E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔 ( 𝛻

(
)
⦅
⋜ 1𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔 ( 𝛻

(
)
⦅

(
)
⦅

(linearity)

= E
❳
/
\
E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔 ( 𝛻

(
)
⦅
⋜ 1𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔

(
)
⦅

(LIE)

= 1
𝜔2

𝜔⟨

𝜕=1
E
❳
/
\

⌈
⌉
{
E
❳
<𝜕,𝜔 ( 𝛻

/
+
⟨

𝜀∳𝜕
E
❳
<𝜀,𝜔 ( 𝛻

/}
⦃
⦄
⋜ <𝜀,𝜔

(
)
⦅

(linearity)

= 1
𝜔2

𝜔⟨

𝜕=1
E
❳
/
\

⌈
⌉
{
E
❳
<𝜕,𝜔 ( 𝛻

/
+
⟨

𝜀∳𝜕
E[𝜗𝜀 ( 𝛻] ω

⟨

𝜀∳𝜕
E
❳
E𝜀,𝜔[𝜗𝜀] ( 𝛻

/}
⦃
⦄
⋜ <𝜕,𝜔

(
)
⦅

(defn. of <𝜀,𝜔)

⨎ 1
𝜔2

𝜔⟨

𝜕=1
E
❳
/
\

⌈
⌉
{
E
❳
<𝜕,𝜔 ( 𝛻

/
+
⟨

𝜀∳𝜕
E[𝜗𝜀 ( 𝛻] ω

⟨

𝜀∳𝜕
E
❳
>𝜗𝜀,𝜔 ( 𝛻

/}
⦃
⦄
⋜ <𝜕,𝜔

(
)
⦅

⨎ +𝜔(𝜔 ω 1)(𝜗𝜑 ω 𝜗𝜍)
𝜔2 ⋜ 𝑉1,𝜔 (condition (33))

= 1
𝜔2

𝜔⟨

𝜕=1
E
❳
/
\

⌈
⌉
{
E
❳
<𝜕,𝜔 ( 𝛻

/
ω
⟨

𝜀∳𝜕
E
❳
>𝜗𝜀,𝜔 ( 𝛻

/}
⦃
⦄
⋜ <𝜕,𝜔

(
)
⦅
+ 𝜔(𝜔 ω 1)(𝜗𝜑 ω 𝜗𝜍)

𝜔2 ⋜ 𝑉1,𝜔 (Claim 6)

⨎ (𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1

𝜔2
𝜔⟨

𝜕=1
E
❳
/
\
<𝜕,𝜔

⟨

𝜀∳𝜕
E
❳
>𝜗𝜀,𝜔 ( 𝛻

/(
)
⦅
+ 𝜔(𝜔 ω 1)(𝜗𝜑 ω 𝜗𝜍)

𝜔2 ⋜ 𝑉1,𝜔

(since <𝜀,𝜔 ϑ [𝜗𝜍, 𝜗𝜑])

= (𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 𝜔±

𝜔2
𝜔⟨

𝜕=1
E
❳
<𝜕,𝜔 ⋆𝜗𝜕,𝜔

/
+ 𝜔(𝜔 ω 1)(𝜗𝜑 ω 𝜗𝜍)

𝜔2 ⋜ 𝑉1,𝜔

(defn. of ⋆𝜗𝜀,𝜔 and since 𝜗0,𝜔 ⟥ <𝜕,𝜔)

S18



= (𝜗𝜑 ω 𝜗𝜍)2
𝜔 + 𝜔±

𝜔

❲
(𝜗𝜑 ω 𝜗𝜍)3 7ℸ

𝐴𝜔
+ 𝜔(𝜔 ω 1)(𝜗𝜑 ω 𝜗𝜍)

𝜔2 ⋜ 𝑉1,𝜔 (Claim 5)

⨎ (𝜗𝜑 ω 𝜗𝜍)2
𝜔 +

❲
(𝜗𝜑 ω 𝜗𝜍)3 7ℸ

𝐴𝜔
+ (𝜗𝜑 ω 𝜗𝜍)𝑉1,𝜔 (since 𝜔± ⨎ 𝜔 and 𝜔 ω 1 ⨎ 𝜔)

Note that the probability 𝑉2,𝜔 event where this may not hold can a"ect the variance by
at most (𝜗𝜑 ω 𝜗𝜍)2 ⋜ 𝑉2,𝜔. Finally, the second part of the claim follows from the fact that
adding a term of size 𝑅(𝜔ω1) has a vanishing impact on the variance.

We use Claim 7 to argue that the average error concentrates around zero.

Claim 8. For agent 𝜀, the average reported value ⋆𝜗𝜀,𝜔 concentrates around the
conditional expectation E

❳
𝜗𝜕 ( 𝛻

/
. That is,

∓0 > 0 ς lim
𝜔→ε

Pr
❳⟦⟦⟦⟦ ⋆𝜗𝜀,𝜔 ω E

❳
𝜗𝜕 ( 𝛻

/⟦⟦⟦⟦ ⨍ 0
/
= 0

Proof. The proof has three parts. First, we show that a particular sum of random
variables has expected value 𝑊𝜔 = 0. This sum will become relevant later on.

𝑊𝜔 ς= E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/
ω <𝜕,𝜔

⌈(
)
⦅

= 1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
E
❳
𝜗𝜕
/
ω E

❳
E
❳
𝜗𝜕 ( 𝛻

//⌈
(linearity, and since E

❳
<𝜕,𝜔

/
= 0)

= 1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
E
❳
𝜗𝜕
/
ω E

❳
𝜗𝜕
/⌈

(LIE)

= 0

Second, we bound the variance 62𝜔 of this same sum of random variables.

62𝜔 ς= Var
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/
ω <𝜕,𝜔

⌈(
)
⦅

= E
❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/
ω <𝜕,𝜔

⌈}
⦃
⦄

2(
)
)
⦅

(since 𝑊𝜔 = 0)
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⨎ 2E
❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/⌈}
⦃
⦄

2(
)
)
⦅
+ 2E

❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔

}
⦃
⦄

2(
)
)
⦅

(Cauchy-Schwarz)

= 2E
❳
/
/
\
E
❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/⌈}
⦃
⦄

2

( 𝛻
(
)
)
⦅

(
)
)
⦅
+ 2E

❳
/
/
\
E
❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔

}
⦃
⦄

2

( 𝛻
(
)
)
⦅

(
)
)
⦅
(LIE)

We will consider both of these terms in turn. The !rst term is

E
❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/⌈}
⦃
⦄

2

( 𝛻
(
)
)
⦅
= Var

❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
𝜗𝜕 ( 𝛻

(
)
⦅

(defn. of variance)

= 1
𝜔 ω 1Var

❳
𝜗𝜕 ( 𝛻

/
(cond. indep.)

⨎ (𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1 (since 𝜗𝜕 ϑ [𝜗𝜍, 𝜗𝜑])

Now, consider the second term.

E
❳
/
/
\

⌈
⌉
{

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔

}
⦃
⦄

2

( 𝛻
(
)
)
⦅

(34)

= Var
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅
+
⌈
⌉
{
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

}
⦃
⦄

2

(defn. of Var[⋜])

= 1
(𝜔 ω 1)2

⟨

𝜕∳𝜀
Var

❳
<𝜕,𝜔 ( 𝛻

/
+
⌈
⌉
{
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

}
⦃
⦄

2

(cond. indep.)

⨎ (𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1 +

⌈
⌉
{
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

}
⦃
⦄

2

(since <𝜕,𝜔 ϑ [𝜗𝜍, 𝜗𝜑])

We plug these new expressions for the two terms back into our inequality.

62𝜔 ⨎
4(𝜗𝜑 ω 𝜗𝜍)2

𝜔 ω 1 + 2E
❳
/
/
\

⌈
⌉
{
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

}
⦃
⦄

2(
)
)
⦅

(35)
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= 4(𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1 + 2Var

❳
/
\
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

(
)
⦅
+ 2

⌈
⌉
{
E
❳
/
\
E
❳
/
\

1
𝜔 ω 1

⟨

𝜕∳𝜀
<𝜕,𝜔 ( 𝛻

(
)
⦅

(
)
⦅

}
⦃
⦄

2

(defn. of variance)

= 4(𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1 + 2Var

❳
E
❳
<𝜕,𝜔 ( 𝛻

//
(LIE and since E

❳
<𝜕,𝜔

/
= 0)

⨎ 4(𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1 + ♯(1) (Claim 7)

Third and !nally, we show that ⋆𝜗𝜀,𝜔 concentrates around E
❳
𝜗𝜕 ( 𝛻

/
. Given 0 > 0,

Pr
❳⟦⟦⟦⟦ ⋆𝜗𝜀,𝜔 ω E

❳
𝜗𝜕 ( 𝛻

/⟦⟦⟦⟦ ⨍ 0
/

= Pr
❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔±
⌈
⌉
{
𝜗0,𝜔 +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔
}
⦃
⦄
ω E

❳
𝜗𝜕 ( 𝛻

/
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0

(
)
⦅

(defn. of ⋆𝜗𝜀,𝜔)

⨎ Pr
❳
/
\

⟦⟦⟦⟦⟦⟦
𝜗0,𝜔
𝜔
⟦⟦⟦⟦⟦⟦ +

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

𝜔± ω 𝜔 + 1
𝜔±(𝜔 ω 1)

⌈
⌉
{

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔
}
⦃
⦄

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
+
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔 ω 1

⌈
⌉
{

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔
}
⦃
⦄
ω E

❳
𝜗𝜕 ( 𝛻

/
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0

(
)
⦅

(triangle inequality)

⨎ Pr\
⟦⟦⟦⟦⟦⟦
𝜗0,𝜔
𝜔
⟦⟦⟦⟦⟦⟦ ⨍

0
3( + Pr

❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

𝜔± ω 𝜔 + 1
𝜔±(𝜔 ω 1)

⌈
⌉
{

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔
}
⦃
⦄

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0
3
(
)
⦅

(36)

⨎ +Pr
❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔 ω 1

⌈
⌉
{

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔
}
⦃
⦄
ω E

❳
𝜗𝜕 ( 𝛻

/
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0
3
(
)
⦅

(union bound)

The !rst two terms of line (36) are vanishing, since ,𝜔 = ♯(𝜔) and 𝜔± = 𝑅(𝜔). The
third term is vanishing as well, since

Pr
❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
>𝜗𝜕 ω E

❳
𝜗𝜕 ( 𝛻

/⌈⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0
3
(
)
⦅

⨎ 𝐹𝜔 + 𝑉1,𝜔 + 𝑉2,𝜔 + Pr
❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
E𝜀,𝜔

❳
𝜗𝜕
/
ω E

❳
𝜗𝜕 ( 𝛻

/⌈⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0
3
(
)
⦅
(defn. of 𝐹𝜔, 𝑉1,𝜔, 𝑉2,𝜔)

= 𝐹𝜔 + 𝑉1,𝜔 + 𝑉2,𝜔 + Pr
❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω <𝜕,𝜔 ω E

❳
𝜗𝜕 ( 𝛻

/⌈⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0
3
(
)
⦅

(de!nition of <𝜀,𝜔)
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= 𝐹𝜔 + 𝑉1,𝜔 + 𝑉2,𝜔 + Pr
❳
/
\

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

1
𝜔 ω 1

⟨

𝜕∳𝜀

⌋
𝜗𝜕 ω <𝜕,𝜔 ω E

❳
𝜗𝜕 ( 𝛻

/⌈
ω 𝑊𝜔

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⨍ 0
3
(
)
⦅

(since 𝑊𝜔 = 0)

⨎ 𝐹𝜔 + 𝑉1,𝜔 + 𝑉2,𝜔 +
962𝜔
02 (Chebyshev’s inequality)

⨎ 𝐹𝜔 + 𝑉1,𝜔 + 𝑉2,𝜔 +
9
02 )

4(𝜗𝜑 ω 𝜗𝜍)2
𝜔 ω 1 + ♯(1)⦅ (inequality (35))

Therefore, ⋆𝜗𝜀,𝜔 converges in probability to E
❳
𝜗𝜕 ( 𝛻

/
.

Finally, let the betting stakes 𝐴𝜔 →ε as the sample size 𝜔 →ε. Claim 8 implies

⋆𝜗𝜀,𝜔 →9 E
❳
𝜗𝜕 ( 𝛻

/

It follows from this and the continuous mapping theorem that

1
𝜔± + 1

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
=

>𝜗𝜀,𝜔
𝜔± + 1 + ⦆ 𝜔±

𝜔± + 1[ ⋆𝜗𝜀,𝜔 →9 E
❳
𝜗𝜕 ( 𝛻

/

This completes the proof.

B.9 Proof of Lemmas 4 and 10

This proof has four parts. It uses notation from Appendices B.6 and B.8.
First, consider any signal ℶ𝜀 where, for any technology ℵ𝜀, its cost in the auxiliary

instance is di"erent from its cost in the original instance. Equivalently, consider any
signal ℶ𝜀 where

𝑆 ( 7ℶ𝜀) ω 𝑆 (ℶ𝜀) > 0

Since ⨋ is a !nite set, we can de!ne a gap 𝐹 > 0 where

𝐹 ς= min
ℶ𝜀 s.t. 𝑆(ℶ𝜀)<𝑆( 7ℶ𝜀)

𝑆 ( 7ℶ𝜀) ω 𝑆 (ℶ𝜀) (37)

This will be useful later in the proof.
Second, we consider a sequence of moments and show that it converges. For any

random variable ♭, de!ne a moment that depends on additional parameter 𝑀 ϑ ℝ, i.e.,

8(♭, 𝑀) = E
⟫
(Pr𝜀[♭ ⨎ 𝑀] ω 1(♭ ⨎ 𝑀))2

❲
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Let ♭𝜔 be a sequence of random variables where ♭𝜔 →9 ♭. To !nd lim𝜔→ε 8(♭𝜔, ⋜), we
!rst consider the limits of two random variables that appear in the de!nition of 8.

1. The random variable Pr𝜀[♭𝜔 ⨎ 𝑀] converges in probability to Pr𝜀[♭ ⨎ 𝑀] for
almost all 𝑀. To see this, !x any constant 0 > 0 and de!ne the probability

9+𝜔 ς= Pr[Pr𝜀[♭ ⨎ 𝑀] ω Pr𝜀[♭𝜔 ⨎ 𝑀] ⨍ 0]

I begin by showing that 9+𝜔 → 0. Observe that

Pr[♭ ⨎ 𝑀] ω Pr[♭𝜔 ⨎ 𝑀] = E[Pr𝜀[♭ ⨎ 𝑀] ω Pr𝜀[♭𝜔 ⨎ 𝑀]] (LIE)

⨍ 9+𝜔 ⋜ 0 + (1 ω 9+𝜔 ) ⋜ 𝑅(0) (LIE and defn. of 9+𝜔 )

However, since ♭𝜔 →9 ♭, we know that ♭𝜔 →𝑁 ♭. By the Portmanteau theorem,

Pr[♭𝜔 ⨎ 𝑀]→ Pr[♭ ⨎ 𝑀] for almost all 𝑀 ϑ ℝ9

Combining this with the previous inequality implies

9+𝜔 ⋜ 0 + (1 ω 9+𝜔 ) ⋜ 𝑅(0)→ 0

Since 0 does not depend on 𝜔, this can only be true when 9+𝜔 → 0. By symmetry,
we can apply this argument again to argue that

9ω𝜔 ς= Pr[Pr𝜀[♭𝜔 ⨎ 𝑀] ω Pr𝜀[♭ ⨎ 𝑀] ⨍ 0]→ 0

By the de!nition of convergence in probability, the fact that 9+𝜔 → 0 and 9ω𝜔 → 0
implies that Pr𝜀[♭𝜔 ⨎ 𝑀]→9 Pr𝜀[♭ ⨎ 𝑀].

2. The random variable 1(♭𝜔 ⨎ 𝑀) converges in probability to 1(♭ ⨎ 𝑀) for almost
all 𝑀. This follows from the continuous mapping theorem. The distribution of ♭
can have at most !nitely many atoms and the indicator function has only one
discontinuity point, at 𝑀. Provided that 𝑀 is not one of those atoms, the
probability that ♭ matches a discontinuity point is zero. Therefore, we can

9The distribution of♭ can have atmost!nitelymany atoms. As long as 𝑀 is not one of those atoms, the
set of points{𝑀± ϑ ℝ ( 𝑀± ⨎ 𝑀} is a continuity set for that distribution, and we can apply the Portmanteau
theorem.
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invoke the continuous mapping theorem for all but !nitely many values of 𝑀.

It follows from these two results and the continuous mapping theorem that

(Pr𝜀[♭𝜔 ⨎ 𝑀] ω 1(♭𝜔 ⨎ 𝑀))2 →9 (Pr𝜀[♭ ⨎ 𝑀] ω 1(♭ ⨎ 𝑀))2

for almost all 𝑀 ϑ ℝ. Since convergence in probability implies convergence in
distribution, we can apply the Portmanteau theorem to show that

8(♭𝜔, ⋜)→ 8(♭, ⋜) a.e.

Set ♭𝜔 = ⋆𝜗𝜀,𝜔 and ♭ = E
❳
𝜗𝜕 ( 𝛻

/
, where ♭𝜔 →9 ♭ by Claim 8. Then

8( ⋆𝜗𝜀,𝜔, ⋜)→ 8(E
❳
𝜗𝜕 ( 𝛻

/
, ⋜) a.e.

We will use this fact momentarily, when applying the bounded convergence theorem.
Third, we characterize the limiting behavior of ⋆𝑆𝜔(ℶ𝜀) as 𝜔 →ε.

lim
𝜔→ε

𝐴ω1𝜔 ⋆𝑆𝜔(ℶ𝜀) = ω
𝐿⟨

𝜛=1
lim
𝜔→ε

⨐
7𝜗

0
8( ⋆𝜗𝜀,𝜔, 𝑀)𝑁𝑀 (de!nition of ⋆𝑆𝜔)

= ω
𝐿⟨

𝜛=1
⨐

7𝜗

0
8(E

❳
𝜗𝜕 ( 𝛻

/
, 𝑀)𝑁𝑀 (bounded convergence theorem)

= 𝑆(ℶ𝜀) (de!nition of 𝑆)

It follows that there exists a threshold 𝐵(ℶ𝜀) such that, for any 𝜔 ⨍ 𝐵(ℶ𝜀),

⟦⟦⟦⟦𝑆(ℶ𝜀) ω 𝐴ω1𝜔 ⋆𝑆𝜔(ℶ𝜀)⟦⟦⟦⟦ <
𝐹
4 (38)

Let 𝐵 = maxℶ𝜀ϑ⨋𝐵(ℶ𝜀). This quantity exists since ⨋ is a !nite set.
Fourth and !nally, we show that agent 𝜀 does not have a pro!table deviation

when 𝜔 ⨍ 𝐵. Assume that all other agents continue to play according to an
equilibrium of the auxiliary instance. Let ℶ𝜀 be the signal that she acquires in the
equilibrium of the auxiliary instance. If agent 𝜀 continues to acquire the same signal
ℶ𝜀, then her best response >𝜗𝜀 does not change. Suppose that agent 𝜀 acquires a di"erent
signal ℶ±𝜀 . We only need to consider deviations to signals ℶ±𝜀 that were not available in
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the auxiliary instance, which implies

𝑆 ( 7ℶ𝜀) ω 𝑆
⌋
ℶ±𝜀
⌈
⨍ 𝐹 (39)

where 𝐹 > 0 was de!ned in equation (37). Since ℶ𝜀 was chosen in equilibrium of the
auxiliary instance, it must have !nite cost. By de!nition of ⋆ℸ in (17), this implies

𝑆 ( 7ℶ𝜀) = 𝑆 (ℶ𝜀) (40)

Combining the last few inequalities, we !nd

⋆𝑆𝜔 (ℶ𝜀) ω ⋆𝑆𝜔
⌋
ℶ±𝜀
⌈
> 𝐴𝜔𝑆 (ℶ𝜀) ω 𝑆

⌋
ℶ±𝜀
⌈
ω 𝐹𝐴𝜔

2 (equation (38))

= 𝐴𝜔𝑆 ( 7ℶ𝜀) ω 𝑆
⌋
ℶ±𝜀
⌈
ω 𝐹𝐴𝜔

2 (equation (40))

⨍ 𝐹𝐴𝜔
2 (inequality (39))

This is the expected loss in transfers from the scoring rule SRCRPS, which is a lower
bound for the expected loss from the scoring rule SR. The maximum gain from
deviating is at most the cost 7ℸ of the combined signal, plus the maximum payo"
𝜗𝜑 ω 𝜗𝜍 from the BDMmechanism (Lemma 4) or the VCG mechanism (Lemma 10).
Therefore, a su#cient condition for the deviation to not be pro!table is

𝐹𝐴𝜔
2 ⨍ 7ℸ + 𝜗𝜑 ω 𝜗𝜍

Since 𝐴𝜔 →ε, there is some threshold 𝐵± such that this condition holds for all
𝜔 ⨍ 𝐵±. Then the agent has no pro!table deviations whenever 𝜔 ⨍ max{𝐵,𝐵±}.

B.10 Proof of Lemma 5

Let 7ℸ(ℵ𝜀) be the maximum cost, given technology ℵ𝜀 and across all base signals ℶ𝜀 ϑ ⨋,
of the signal ℶ±𝜀 that combines ℶ𝜀 with a revealing signal. Assumptions 2 and 3 ensure
that this is !nite. Let 7ℸ = maxℵ𝜀ϑϱ 7ℸ(ℵ𝜀).

Agent 𝜀 reports the alternative >𝜛𝜀 that maximizes her expected value conditional
on being pivotal. Claim 9 says that agent 𝜀 conditioning on being pivotal does not
meaningfully a"ect her expected value 𝜗𝜀.
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Claim 9. Fix a constant 0 > 0. Then

Pr
❳⟦⟦⟦⟦E𝜀,𝜔

❳
𝜗𝜀 ( 𝐼𝜀,𝜔

/
ω E𝜀,𝜔[𝜗𝜀]⟦⟦⟦⟦ ⨍ 0

/
⨎ 1
0 ⋜

❲
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

Suppose 𝜛𝜀 is the truthful report. Then, with high probability,

E𝜀,𝜔
❳
𝜗𝜀𝜛𝜀

/
⨍ E𝜀,𝜔

❳
𝜗𝜀 >𝜛𝜀

/
(since 𝜛𝜀 is truthful)

⨍ E𝜀,𝜔
❳
𝜗𝜀 >𝜛𝜀 ( 𝐼𝜀,𝜔

/
ω 0 (Claim 9)

⨍ E𝜀,𝜔
❳
𝜗𝜀𝜛𝜀 ( 𝐼𝜀,𝜔

/
ω 0 (since >𝜛𝜀 is optimal)

⨍ E𝜀,𝜔
❳
𝜗𝜀𝜛𝜀

/
ω 20 (Claim 9)

This and the union bound ensures that

Pr\max
𝜀=1,…,𝜔

⟦⟦⟦⟦⟦⟦⟦
max
𝜛ϑ∱

E𝜀,𝜔[𝜗𝜀𝜛] ω E𝜀,𝜔
❳
𝜗𝜀 >𝜛𝜀

/⟦⟦⟦⟦⟦⟦⟦
⨍ 20( ⨎ 𝜔

0 ⋜
❲

⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

Setting 0 appropriately completes the proof.

B.11 Proof of Lemma 7

De!ne 7ℸ as in Lemma 5. Claim 10 says that agent 𝜀 conditioning on being potentially
pivotal does not meaningfully a"ect her expected value 𝜗𝜀.

Claim 10. Fix a constant 0 > 0. Then

Pr
❳⟦⟦⟦⟦E𝜀,𝜔

❳
𝜗𝜀 ( 𝐼𝜀,𝜔

/
ω E𝜀,𝜔[𝜗𝜀]⟦⟦⟦⟦ ⨍ 0

/
⨎ 1
0 ⋜

❲
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

Claim 11 is a useful fact that we use to prove Claims 12 and 13. It refers to 1𝜔,
which is the cumulative distribution function of the bias term 𝜗0,𝜔.

Claim 11. Fix constants 𝐺, ≨ where 0 ⨎ ≨ ω 𝐺 ⨎ ,𝜔. Then

1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ )≨ ω 𝐺

,𝜔
ω 𝑍 ⦆≨ ω 𝐺

,𝜔
[
2
⦅ ⨎ 1𝜔 (≨) ω 1𝜔 (𝐺) ⨎

1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ )≨ ω 𝐺

,𝜔
+ 𝑍 ⦆≨ ω 𝐺

,𝜔
[
2
⦅

Claims 12 and 13 say that agent 𝜀’s expected value is roughly the same regardless
of whether (i) she conditions on being potentially pivotal or (ii) she conditions on the
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price ⋆9𝜀,𝜔 being below some threshold 𝑀. Claim 12 conditions on agent 𝜀 not being
dictator, and Claim 13 drops this requirement. They refer to the following sequence:

⌣𝜔 = ),𝜔 + 𝑍(𝜗𝜑 ω 𝜗𝜍)
,𝜔 ω 𝑍(𝜗𝜑 ω 𝜗𝜍)

⦅
2

ω ),𝜔 ω 𝑍(𝜗𝜑 ω 𝜗𝜍)
,𝜔 + 𝑍(𝜗𝜑 ω 𝜗𝜍)

⦅
2

Claim 12. Fix constants 𝑀, 𝑀± where 𝜗𝜍 ⨎ 𝑀 < 𝑀± ⨎ 𝜗𝜑 . Then

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/⟦⟦⟦⟦ ⨎ ⌣𝜔

Claim 13. Fix constants 𝑀, 𝑀± where 𝜗𝜍 ⨎ 𝑀 < 𝑀± ⨎ 𝜗𝜑 . Then

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝐼𝜀,𝜔

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/⟦⟦⟦⟦ ⨎ ⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [

Claim 14 says that agent 𝜀’s reported value will not be too far from her expected
value. It relies heavily on Claims 10 and 11.

Claim 14. Fix a constant 0 > 0. Then

Pr\⟦⟦⟦⟦ >𝜗𝜀,𝜔 ω E𝜀,𝜔[𝜗𝜀]⟦⟦⟦⟦ ⨍ 20 + 2⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [( ⨎ 1
0

❲
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

Let 0𝜔 = 𝜔ω1)2. Apply the union bound to Claim 14 to show that

Pr\ 𝜔max
𝜀=1

⟦⟦⟦⟦ >𝜗𝜀,𝜔 ω E𝜀,𝜔[𝜗𝜀]⟦⟦⟦⟦ ⨍ 0𝜔 + ⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [( ⨎ 𝜔
0𝜔

❲
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

We set the truthfulness parameters as follows. First, let

𝑉1,𝜔 = 0𝜔 + ⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [ = 𝜔ω1)2 + 𝑅(𝜔ω1)2) + 𝑅
⌋
𝜔ω1)2 + 𝜔ω1

⌈
= 𝑅

⌋
𝜔ω1)2

⌈

Second, let

𝑉2,𝜔 =
𝜔
0𝜔

❲
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

= 𝜔3)2
⟨

⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
𝜔ω3 ⋜ 𝜔7 = 𝑅

⌋
𝜔ω1)2

⌈

This completes the proof.
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B.12 Proof of Claims 9 and 10

We want to bound the following term:

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝐼𝜀,𝜔

/
ω E𝜀,𝜔[𝜗𝜀]⟦⟦⟦⟦ (41)

=
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟨

⌢ϑ∲
⌢ ⋜ Pr𝜀,𝜔

❳
𝜗𝜀 = ⌢ ( 𝐼𝜀,𝜔

/
ω
⟨

⌢ϑ∲
⌢ ⋜ Pr𝜀,𝜔[𝜗𝜀 = ⌢]

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
(LIE)

⨎
⟨

⌢ϑ∲
⌢ ⋜ ⟦⟦⟦⟦Pr𝜀,𝜔

❳
𝜗𝜀 = ⌢ ( 𝐼𝜀,𝜔

/
ω Pr𝜀,𝜔[𝜗𝜀 = ⌢]⟦⟦⟦⟦ (triangle inequality)

=
⟨

⌢ϑ∲
⌢ ⋜

⟦⟦⟦⟦⟦⟦⟦⟦⟦

Pr𝜀,𝜔
❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/
⋜ Pr𝜀,𝜔[𝜗𝜀 = ⌢]

𝑇𝜀,𝜔
ω Pr𝜀,𝜔[𝜗𝜀 = ⌢]

⟦⟦⟦⟦⟦⟦⟦⟦⟦
(Bayes’ rule)

=
⟨

⌢ϑ∲
⌢ ⋜ Pr𝜀,𝜔[𝜗𝜀 = ⌢] ⋜

⟦⟦⟦⟦⟦⟦⟦⟦⟦

Pr𝜀,𝜔
❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/

𝑇𝜀,𝜔
ω 1

⟦⟦⟦⟦⟦⟦⟦⟦⟦

=
⟨

⌢ϑ∲
⌢ ⋜ Pr𝜀,𝜔[𝜗𝜀 = ⌢] ⋜

⟦⟦⟦⟦⟦⟦⟦⟦⟦

Pr𝜀,𝜔
❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/
ω 𝑇𝜀,𝜔

𝑇𝜀,𝜔

⟦⟦⟦⟦⟦⟦⟦⟦⟦
= 1
𝑇𝜀,𝜔

⟨

⌢ϑ∲
⌢ ⋜ Pr𝜀,𝜔[𝜗𝜀 = ⌢] ⋜ ⟦⟦⟦⟦Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/
ω 𝑇𝜀,𝜔⟦⟦⟦⟦

⨎
⟧
⟪∲⟪
𝑇𝜀,𝜔

❲⟨

⌢ϑ∲

⌋
⌢ ⋜ Pr𝜀,𝜔[𝜗𝜀 = ⌢] ⋜ ⟦⟦⟦⟦Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/
ω 𝑇𝜀,𝜔⟦⟦⟦⟦

⌈2

(since [.[1 ⨎
⟧
𝑁 ⋜ [.[2 for . ϑ ℝ𝑁)

⨎
⟧
⟪∲⟪
𝑇𝜀,𝜔

❲⟨

⌢ϑ∲
Pr𝜀,𝜔[𝜗𝜀 = ⌢] ⋜

⌋
⌢ ⋜ ⟦⟦⟦⟦Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/
ω 𝑇𝜀,𝜔⟦⟦⟦⟦

⌈2
(since Pr[⋜]2 ⨎ Pr[⋜])

⨎
⟧
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪

𝑇𝜀,𝜔

❲⟨

⌢ϑ∲
Pr𝜀,𝜔[𝜗𝜀 = ⌢] ⋜

⌋
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀 = ⌢

/
ω 𝑇𝜀,𝜔

⌈2

(since ⌢ ⨎ ⟪𝜗𝜑 ω 𝜗𝜍⟪)

=
⟧
⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪

𝑇𝜀,𝜔

⟨
E𝜀,𝜔

⟫⌋
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/
ω 𝑇𝜀,𝜔

⌈2❲
(LIE)

Focus on the term inside the square root.

E𝜀,𝜔
⟫⌋
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/
ω 𝑇𝜀,𝜔

⌈2❲

⨎ E𝜀,𝜔
⟫⌋
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/
ω 𝑇𝜀,𝜔

⌈2 +
⌋
Pr𝜀,𝜔

❳
⋆𝜗𝜀,𝜔 0 𝐼𝜔 ( 𝜗𝜀

/
ω (1 ω 𝑇𝜀,𝜔)

⌈2❲
(since (⋜)2 ⨍ 0)
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⨎ E𝜀,𝜔
⟫
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/2 + 𝑇2𝜀,𝜔 ω 2𝑇𝜀,𝜔 ⋜ Pr𝜀,𝜔
❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/❲

⨎ +E𝜀,𝜔
❳
Pr𝜀,𝜔

❳
⋆𝜗𝜀,𝜔 0 𝐼𝜔 ( 𝜗𝜀

/2 + (1 ω 𝑇𝜀,𝜔)2 ω 2(1 ω 𝑇𝜀,𝜔) ⋜ Pr𝜀,𝜔
❳
⋆𝜗𝜀,𝜔 0 𝐼𝜔 ( 𝜗𝜀

//

⨎ E𝜀,𝜔
❳
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/2 + Pr𝜀,𝜔
❳
⋆𝜗𝜀,𝜔 0 𝐼𝜔 ( 𝜗𝜀

/2/

⨎ +𝑇2𝜀,𝜔 + (1 ω 𝑇𝜀,𝜔)2 ω 2(1 ω 𝑇𝜀,𝜔) ⋜ Pr𝜀,𝜔
❳
⋆𝜗𝜀,𝜔 0 𝐼𝜔

/
ω 2𝑇𝜀,𝜔 ⋜ Pr𝜀,𝜔

❳
𝐼𝜀,𝜔

/
(LIE)

⨎ E𝜀,𝜔
❳
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/2 + Pr𝜀,𝜔
❳
⋆𝜗𝜀,𝜔 0 𝐼𝜔 ( 𝜗𝜀

/2/ ω 𝑇2𝜀,𝜔 ω (1 ω 𝑇𝜀,𝜔)2 (defn. of 𝑇𝜀,𝜔)

= E𝜀,𝜔⌊max≨𝜀
E𝜀,𝜔

⟫
SR𝐼(≨𝜀, ⋆𝜗𝜀) ( 𝜗𝜀

❲
⌋ ωmax

≨𝜀
E𝜀,𝜔

⟫
SR𝐼(≨𝜀, ⋆𝜗𝜀)

❲
(42)

The last equality follows from Example 1 of Gneiting and Raftery (2007). Next,

(42) ⨎ (42) + E𝜀,𝜔⌊max≨𝜀
E𝜀,𝜔

⟫⟩
SR(≨𝜀, ⋆𝜗𝜀) ω SR𝐼(≨𝜀, ⋆𝜗𝜀)

⟪
( 𝜗𝜀

❲
⌋

ωmax
≨𝜀

E𝜀,𝜔
⟫
SR(≨𝜀, ⋆𝜗𝜀) ω SR𝐼(≨𝜀, ⋆𝜗𝜀)

❲
(E[max(⋜)] ⨍ max E[⋜])

= E𝜀,𝜔⌊max≨𝜀
E𝜀,𝜔[SR(≨𝜀, ⋆𝜗𝜀) ( 𝜗𝜀]⌋ ωmax

≨𝜀
E𝜀,𝜔[SR(≨𝜀, ⋆𝜗𝜀)] (43)

The last equality follows from the fact that SR ω SR𝐼 is also a proper scoring rule.
Recall that the agent can learn 𝜗𝜀 by acquiring a revealing signal in addition to her
current signal ℶ𝜀. The cost of this is no greater than 7ℸ. In equilibrium, therefore,

𝐴𝜔 ⋜ E[(43)] ⨎ 7ℸ (44)

Combining all of the preceding arguments, we obtain

E[(41)]2 ⨎ E
⟫
(41)2

❲
(Jensen’s inequality)

⨎ E⌊⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪
𝑇2𝜀,𝜔

⋜ E𝜀,𝜔
⟫⌋
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/
ω 𝑇𝜀,𝜔

⌈2❲⌋ (inequality (41))

⨎ ⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪
(𝐹𝜔)𝜔)2

⋜ E
⟫
E𝜀,𝜔

⟫⌋
Pr𝜀,𝜔

❳
𝐼𝜀,𝜔 ( 𝜗𝜀

/
ω 𝑇𝜀,𝜔

⌈2❲❲
(since 𝑇𝜀,𝜔 ⨍ 𝐹𝜔)𝜔)

⨎ ⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪
(𝐹𝜔)𝜔)2

⋜ E[(42)] (inequality (42))

⨎ ⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

(inequality (44))
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Combining this with Markov’s inequality gives us

Pr[(41) ⨍ 0] ⨎ E[(41)]
0 ⨎ 1

0 ⋜
❲

⟪∲⟪ ⋜ ⟪𝜗𝜑 ω 𝜗𝜍⟪ ⋜ 7ℸ
(𝐹𝜔)𝜔)2 ⋜ 𝐴𝜔

This completes the proof.

B.13 Proof of Claim 11

We rely on the fact that, for any constant ⟪ℏ⟪ ⨎ 1,

𝑍ℏ ϑ \1 + ℏ ω 𝑍 ⋜ ℏ2

2 , 1 + ℏ + 𝑍 ⋜ ℏ2

2 ( (45)

There are three cases to consider.

1. Suppose 𝐺 ⨍ 0. Then

1(≨) ω 1(𝐺) = 1
2 ⦆𝑍

ω ⟪𝐺⟪
,𝜔 ω 𝑍ω

⟪≨⟪
,𝜔 [ (since 𝜗0,𝜔 + L*+)*,’(,𝜔))

= 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ ⦆𝑍ω

⟪𝐺⟪
,𝜔
+ ⟪≨⟪
,𝜔 ω 1[

= 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ ⦆𝑍

≨ω𝐺
,𝜔 ω 1[ (since ≨ ⨍ 𝐺 ⨍ 0)

ϑ 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ )≨ ω 𝐺

,𝜔
+ 𝑍
2 ⌊ω ⦆

≨ ω 𝐺
,𝜔

[
2
, ⦆≨ ω 𝐺

,𝜔
[
2
⌋⦅ (bound (45))

2. Suppose ≨ < 0. Then

1(≨) ω 1(𝐺) = 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 ω 𝑍ω

⟪𝐺⟪
,𝜔 [ (since 𝜗0,𝜔 + L*+)*,’(,𝜔))

= 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ ⦆1 ω 𝑍

⟪≨⟪
,𝜔
ω ⟪𝐺⟪
,𝜔 [

= 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ ⦆1 ω 𝑍

𝐺ω≨
,𝜔 [ (since 𝐺 ⨎ ≨ < 0)

ϑ 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ )≨ ω 𝐺

,𝜔
+ 𝑍
2 ⌊ω ⦆

≨ ω 𝐺
,𝜔

[
2
, ⦆≨ ω 𝐺

,𝜔
[
2
⌋⦅ (bound (45))
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3. Suppose ≨ ⨍ 0, 𝐺 < 0. Note that ω,𝜔 ⨎ 𝐺 ω ≨ ⨎ ≨ + 𝐺 ⨎ ≨ < ≨ ω 𝐺 ⨎ ,𝜔. Then

1(≨) ω 1(𝐺)

= 1 ω 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 + 𝑍ω

⟪𝐺⟪
,𝜔 [ (since 𝜗0,𝜔 + L*+)*,’(,𝜔))

= 1
2 ⦆2𝑍

0 ω 𝑍ω
⟪≨⟪
,𝜔 ω 𝑍ω

⟪𝐺⟪
,𝜔 [

= 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ ⦆2𝑍

⟪≨⟪
,𝜔 ω 1 ω 𝑍

⟪≨⟪
,𝜔
ω ⟪𝐺⟪
,𝜔 [

= 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ ⦆2𝑍

≨
,𝜔 ω 1 ω 𝑍

≨+𝐺
,𝜔 [ (since 𝐺 < 0 ⨎ ≨)

ϑ 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ )≨ ω 𝐺

,𝜔
+ 𝑍
2 ⌊ω ⦆

≨
,𝜔
[
2
ω ⦆≨ + 𝐺

,𝜔
[
2
, ⦆ ≨,𝜔

[
2
+ ⦆≨ + 𝐺

,𝜔
[
2
⌋⦅

(bound (45))

𝜚 1
2 ⦆𝑍

ω ⟪≨⟪
,𝜔 [ )≨ ω 𝐺

,𝜔
+ 𝑍 ⌊ω ⦆≨ ω 𝐺

,𝜔
[
2
, ⦆≨ ω 𝐺

,𝜔
[
2
⌋⦅ (since 𝐺 < 0 ⨎ ≨)

The bound in case 3 is the same as the bound in the statement of the claim, while the
bounds in cases 1 and 2 are slightly tighter.

B.14 Proof of Claim 12

For convenience, for event ♮ 𝜚 ℝ, let

ℷ𝑀,𝑀±(♮) = Pr𝜀,𝜔
❳
/
\

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ϑ ♮ ( 𝑀 ⨎ ω𝜗0,𝜔 ω

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨎ 𝑀±

(
)
⦅

Observe that

E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
(46)

= E𝜀,𝜔
❳
/
\
𝜗𝜀 ( 𝑀 ⨎ ω𝜗0,𝜔 ω

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨎ 𝑀±

(
)
⦅

(defn. of ⋆𝜗𝜀)

=⨐
ℝ
E𝜀,𝜔

❳
/
\
𝜗𝜀 ( 𝑀 ⨎ ω𝜗0,𝜔 ω

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨎ 𝑀±,

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 = ⌢

(
)
⦅
⋜ ℷ𝑀,𝑀±(𝑁⌢) (LIE)
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=⨐
ℝ
E𝜀,𝜔

❳
/
\
𝜗𝜀 (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 = ⌢

(
)
⦅
⋜ ℷ𝑀,𝑀±(𝑁⌢) (since 𝜗𝜀 ⟥ 𝜗0,𝜔)

Since the distribution ℷ𝑀,𝑀± is not necessarily discrete or continuous, we need to refer
to the de!nition of Lebesgue integration.

De!nition 21. A function 𝑎 ς ℝ→ ℝ is simple if there is a sequence 𝑏𝑎
1 ,… ,𝑏𝑎

𝑐𝑎 𝜚 ∲ of
disjoint ℷ𝑀,𝑀±-measurable sets, and values .𝑎1 ,… ,.𝑎𝑐 ϑ ℝ+, such that

𝑎(⌢) =
𝑐𝑎⟨

𝐿=1
.𝐿 ⋜ 1(⌢ ϑ 𝑏𝐿)

Let⨑ be the set of simple functions.

By de!nition of Lebesgue integration,

(46) = sup
𝑎ϑ⨑

𝑐𝑎⟨

𝐿=1
.𝑎𝐿 ⋜ ℷ𝑀,𝑀± ⌋𝑏𝑎

𝐿
⌈
ω sup

𝑎±ϑ⨑

𝑐𝑎±⟨

𝐿=1
.𝑎±𝐿 ⋜ ℷ𝑀,𝑀± ⌋𝑏𝑎±

𝐿
⌈

(47)

s.t. 𝑎(⌢) ⨎
⌈
⌉
{
E𝜀,𝜔

❳
/
\
𝜗𝜀 (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 = ⌢

(
)
⦅

}
⦃
⦄

+

and 𝑎±(⌢) ⨎ ω
⌈
⌉
{
E𝜀,𝜔

❳
/
\
𝜗𝜀 (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 = ⌢

(
)
⦅

}
⦃
⦄

ω

Consider a sequence of simple functions (𝑎𝑑)ε𝑑=1. For convenience, let 𝑐𝑑 = 𝑐𝑎𝑑 and
𝑏𝑑
𝐿 = 𝑏𝑎𝑑

𝐿 . De!ne

∂𝐿
𝑑 ς= sup𝑏𝑑

𝐿 ω inf 𝑏𝑑
𝐿 and ∂𝑑 = max

𝐿=1,…,𝑐𝑑
∂𝐿
𝑑

We eventually let this sequence converge to one of the suprema in equation (47), so it
is without loss of generality to restrict attention to sequences that satisfy ∂𝑑 → 0.

Applying Bayes’ rule, we !nd that

ℷ𝑀,𝑀±(𝑏𝑑
𝐿) =

Pr𝜀,𝜔
⟫
𝑀 ⨎ ω𝜗0,𝜔 ω

⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ⨎ 𝑀± (⦆𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲
Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲

Pr𝜀,𝜔
⟫
𝑀 ⨎ ω𝜗0,𝜔 ω

⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ⨎ 𝑀±

❲

=
Pr𝜀,𝜔

⟫
𝑀 ⨎ ω𝜗0,𝜔 ω

⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ⨎ 𝑀± (⦆𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲
Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲

⦆𝑐𝑑

𝐿±=1 Pr𝜀,𝜔
⟫
𝑀 ⨎ ω𝜗0,𝜔 ω

⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ⨎ 𝑀± (⦆𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿±
❲
Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿±
❲ (48)
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where the second line follows from the law of iterated expectations. We focus on the
conditional probabilites in (48). Recall that 1𝜔 is the cumulative distribution function
of 𝜗0,𝜔. Let 𝑑 be large enough that ∂𝑑 < 𝑀± ω 𝑀. Then

Pr𝜀,𝜔
❳
/
\
𝑀 ⨎ ω𝜗0,𝜔 ω

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨎ 𝑀± (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿
(
)
⦅

(49)

= Pr𝜀,𝜔
❳
/
\
𝑀 +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨎ ω𝜗0,𝜔 ⨎ 𝑀± +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿
(
)
⦅

⨎ Pr𝜀,𝜔
❳
/
\
𝑀 + inf 𝑏𝑑

𝐿 ⨎ ω𝜗0,𝜔 ⨎ 𝑀± + sup𝑏𝑑
𝐿 (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿
(
)
⦅

= Pr
❳
𝑀 + inf 𝑏𝑑

𝐿 ⨎ ω𝜗0,𝜔 ⨎ 𝑀± + sup𝑏𝑑
𝐿
/

(independence of 𝜗0,𝜔)
= Pr

❳
ω𝑀± ω sup𝑏𝑑

𝐿 ⨎ 𝜗0,𝜔 ⨎ ω𝑀 ω inf 𝑏𝑑
𝐿
/

= Pr
❳
𝜗0,𝜔 ⨎ ω𝑀 ω inf 𝑏𝑑

𝐿
/
ω Pr

❳
ω𝑀± ω sup𝑏𝑑

𝐿 ⨎ 𝜗0,𝜔
/

= 1𝜔
⌋
ω𝑀 ω inf 𝑏𝑑

𝐿
⌈
ω 1𝜔

⌋
ω𝑀± ω sup𝑏𝑑

𝐿
⌈

(defn. of 1𝜔)

⨎ 1
2 exp )ω

⟦⟦⟦⟦ω𝑀 ω inf 𝑏𝑑
𝐿
⟦⟦⟦⟦

,𝜔
⦅
⌈
⌉
{

𝑀± ω 𝑀 + ∂𝐿
𝑑

,𝜔
+ 𝑍 )

𝑀± ω 𝑀 + ∂𝐿
𝑑

,𝜔
⦅
2}
⦃
⦄

(by Claim 11)

⨎ 1
2 exp )ω

⟦⟦⟦⟦ω𝑀 ω inf 𝑏𝑑
𝐿
⟦⟦⟦⟦

,𝜔
⦅ )𝑀

± ω 𝑀 + ∂𝑑
,𝜔

+ 𝑍 ⦆𝑀
± ω 𝑀 + ∂𝑑

,𝜔
[
2

⦅ (defn. of ∂𝑑)

We can also obtain a lower bound as follows:

(49) ⨍ Pr𝜀,𝜔
❳
/
\
𝑀 + sup𝑏𝑑

𝐿 ⨎ ω𝜗0,𝜔 ⨎ 𝑀± + inf 𝑏𝑑
𝐿 (

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ϑ 𝑏𝐿

(
)
⦅

= Pr
❳
𝑀 + sup𝑏𝑑

𝐿 ⨎ ω𝜗0,𝜔 ⨎ 𝑀± + inf 𝑏𝑑
𝐿
/

(independence of 𝜗0,𝜔)
⨍ 1𝜔

⌋
ω𝑀 ω sup𝑏𝑑

𝐿
⌈
ω 1𝜔

⌋
ω𝑀± ω inf 𝑏𝑑

𝐿
⌈

(defn. of 1𝜔)

⨍ 1
2 exp )ω

⟦⟦⟦⟦ω𝑀 ω sup𝑏𝑑
𝐿
⟦⟦⟦⟦

,𝜔
⦅
⌈
⌉
{

𝑀± ω 𝑀 ω ∂𝐿
𝑑

,𝜔
ω 𝑍 )

𝑀± ω 𝑀 ω ∂𝐿
𝑑

,𝜔
⦅
2}
⦃
⦄

(by Claim 11)

⨍ 1
2 exp )ω

⟦⟦⟦⟦ω𝑀 ω sup𝑏𝑑
𝐿
⟦⟦⟦⟦

,𝜔
⦅ )𝑀

± ω 𝑀 ω ∂𝑑
,𝜔

ω 𝑍 ⦆𝑀
± ω 𝑀 ω ∂𝑑

,𝜔
[
2

⦅

(defn. of ∂𝑑 and since ,𝜔 ⨍ 𝑍(𝜗𝜑 ω 𝜗𝜍))
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Together with equation (48), these bounds imply that

exp ⦆ω ⟪ω𝑀ωsup𝑏
𝑑
𝐿⟪

,𝜔
[ ) 𝑀

±ω𝑀ω∂𝑑
,𝜔

ω 𝑍 ⦆ 𝑀
±ω𝑀ω∂𝑑
,𝜔

[
2
⦅Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲

⦆𝑐𝑑
𝐿±=1 exp ⦆ω

⟦⟦⟦⟦⟦ω𝑀ωinf 𝑏
𝑑
𝐿±
⟦⟦⟦⟦⟦

,𝜔
[ ) 𝑀±ω𝑀+∂𝑑

,𝜔
+ 𝑍 ⦆ 𝑀±ω𝑀+∂𝑑

,𝜔
[
2
⦅Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿±
❲ (50)

⨎ (48)

⨎
exp ⦆ω ⟪ω𝑀ωinf 𝑏

𝑑
𝐿⟪

,𝜔
[ ) 𝑀

±ω𝑀+∂𝑑
,𝜔

+ 𝑍 ⦆ 𝑀
±ω𝑀+∂𝑑
,𝜔

[
2
⦅Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲

⦆𝑐𝑑
𝐿±=1 exp ⦆ω

⟦⟦⟦⟦⟦ω𝑀ωmax 𝑏
𝑑
𝐿±
⟦⟦⟦⟦⟦

,𝜔
[ ) 𝑀±ω𝑀ω∂𝑑

,𝜔
ω 𝑍 ⦆ 𝑀±ω𝑀ω∂𝑑

,𝜔
[
2
⦅Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿±
❲

To make our notation more compact, de!ne

𝑒+𝜔,𝑑(𝑀± ω 𝑀) =
𝑀±ω𝑀+∂𝑑

,𝜔
+ 𝑍 ⦆ 𝑀

±ω𝑀+∂𝑑
,𝜔

[
2

𝑀±ω𝑀ω∂𝑑
,𝜔

ω 𝑍 ⦆ 𝑀±ω𝑀ω∂𝑑
,𝜔

[
2 and 𝑒ω𝜔,𝑑(𝑀± ω 𝑀) =

𝑀±ω𝑀ω∂𝑑
,𝜔

ω 𝑍 ⦆ 𝑀
±ω𝑀ω∂𝑑
,𝜔

[
2

𝑀±ω𝑀+∂𝑑
,𝜔

+ 𝑍 ⦆ 𝑀±ω𝑀+∂𝑑
,𝜔

[
2

and their respective limits as 𝑑 →ε,

𝑒+𝜔 (𝑀± ω 𝑀) = ,𝜔 + 𝑍(𝑀± ω 𝑀)
,𝜔 ω 𝑍(𝑀± ω 𝑀) and 𝑒ω𝜔 (𝑀± ω 𝑀) = ,𝜔 ω 𝑍(𝑀± ω 𝑀)

,𝜔 + 𝑍(𝑀± ω 𝑀)

Similarly, de!ne

𝑓𝜀,𝜔,𝑑(𝐿) =
exp ⦆ω ⟪ω𝑀ωinf 𝑏

𝑑
𝐿⟪

,𝜔
[Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿

❲

⦆𝑐𝑑
𝐿±=1 exp ⦆ω

⟦⟦⟦⟦⟦ω𝑀ωmax 𝑏
𝑑
𝐿±
⟦⟦⟦⟦⟦

,𝜔
[Pr𝜀,𝜔

⟫⦆
𝜕∳𝜀 >𝜗𝜕,𝜔 ϑ 𝑏𝑑

𝐿±
❲

With this notation, inequality (50) becomes

𝑒ω𝜔,𝑑(𝑀± ω 𝑀) ⋜ 𝑓𝜀,𝜔,𝑑(𝐿) ⨎ ℷ𝑀,𝑀±(𝑏𝑑
𝐿) ⨎ 𝑒+𝜔,𝑑(𝑀± ω 𝑀) ⋜ 𝑓𝜀,𝜔,𝑑(𝐿) (51)

S34



It follows that

lim sup
𝑑→ε

⌈
⌉
{

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑(𝑏𝑑

𝐿) ω
⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿)
}
⦃
⦄

(52)

= lim sup
𝑑→ε

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿) )
ℷ𝜗𝜍 ,𝜗𝜑(𝑏𝑑

𝐿)
ℷ𝑀,𝑀±(𝑏𝑑

𝐿)
ω 1⦅

⨎ lim sup
𝑑→ε

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿) )
𝑒+𝜔,𝑑(𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔,𝑑(𝑀± ω 𝑀) ω 1⦅ (inequality (51))

= )lim
𝑑→ε

𝑒+𝜔,𝑑(𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔,𝑑(𝑀± ω 𝑀) ω 1⦅

⌈
⌉
{
lim sup

𝑑→ε

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿)
}
⦃
⦄

(property of lim sup)

= )𝑒
+
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔 (𝑀± ω 𝑀) ω 1⦅

⌈
⌉
{
lim sup

𝑑→ε

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿)
}
⦃
⦄

(property of lim)

⨎ )𝑒
+
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍)

ω 1⦅
⌈
⌉
{
lim sup

𝑑→ε

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿)
}
⦃
⦄

(since 𝑒ω𝜔 (⋜) decreasing)

Following similar reasoning, we !nd that

(52) ⨍ )𝑒
ω
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍)

ω 1⦅
⌈
⌉
{
lim sup

𝑑→ε

⟨

𝐿=1,…,𝑐𝑑
.𝑑𝐿 ⋜ ℷ𝑀,𝑀±(𝑏𝑑

𝐿)
}
⦃
⦄

(53)

Finally, we can return to the Lebesgue integral de!ned in equation (47). Let 𝑎𝑑 be the
sequence of simple functions that satis!es

lim
𝑑→ε

𝑐𝑎𝑑⟨

𝐿=1
.𝑎𝑑𝐿 ⋜ ℷ𝑀,𝑀±

⟩
𝑏𝑎𝑑
𝐿

⟪
= sup

𝑎ϑ⨑

𝑐𝑎⟨

𝐿=1
.𝑎𝐿 ⋜ ℷ𝑀,𝑀±

Let 𝑎±𝑑 be the sequence of simple functions that satis!es

sup
𝑎±ϑ⨑

𝑐𝑎±⟨

𝐿=1
.𝑎±𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑

⌋
𝑏𝑎±
𝐿
⌈
= lim

𝑑→ε

𝑐𝑎±𝑑⟨

𝐿=1
.𝑎

±
𝑑

𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑 ⦆𝑏𝑎±𝑑
𝐿 [
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Next, observe that

E𝜀,𝜔
❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
(54)

= sup
𝑎ϑ⨑

𝑐𝑎⟨

𝐿=1
.𝑎𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑

⌋
𝑏𝑎
𝐿
⌈
ω sup

𝑎ϑ⨑

𝑐𝑎⟨

𝐿=1
.𝑎𝐿 ⋜ ℷ𝑀,𝑀± ⌋𝑏𝑎

𝐿
⌈

= ω sup
𝑎±ϑ⨑

𝑐𝑎±⟨

𝐿=1
.𝑎±𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑

⌋
𝑏𝑎±
𝐿
⌈
+ sup

𝑎±ϑ⨑

𝑐𝑎±⟨

𝐿=1
.𝑎±𝐿 ⋜ ℷ𝑀,𝑀± ⌋𝑏𝑎±

𝐿
⌈

(equation (47))

⨍ lim sup
𝑑→ε

𝑐𝑎𝑑⟨

𝐿=1
.𝑎𝑑𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑

⟩
𝑏𝑎𝑑
𝐿

⟪
ω lim

𝑑→ε

𝑐𝑎𝑑⟨

𝐿=1
.𝑎𝑑𝐿 ⋜ ℷ𝑀,𝑀±

⟩
𝑏𝑎𝑑
𝐿

⟪

= ω lim
𝑑→ε

𝑐𝑎±𝑑⟨

𝐿=1
.𝑎

±
𝑑

𝐿 ⋜ ℷ𝜗𝜍 ,𝜗𝜑 ⦆𝑏𝑎±𝑑
𝐿 [ + lim sup

𝑑→ε

𝑐𝑎±𝑑⟨

𝐿=1
.𝑎

±
𝑑

𝐿 ⋜ ℷ𝑀,𝑀± ⦆𝑏𝑎±𝑑
𝐿 [ (defn. of sup and 𝑎𝑑,𝑎±𝑑 )

⨍ )𝑒
ω
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍)

ω 1⦅ (𝜗𝜑 ω 𝜗𝜍) ω )𝑒
+
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍)

ω 1⦅ (𝜗𝜑 ω 𝜗𝜍)

(inequalities (52) and (53))

⨍ )𝑒
ω
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍)

ω 𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍)

⦅ (𝜗𝜑 ω 𝜗𝜍)

Following similar reasoning, we !nd that

(54) ⨎ )𝑒
+
𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍)

ω 𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍)
𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍)

⦅ (𝜗𝜑 ω 𝜗𝜍) (55)

Combine inequalities (54) and (55), and then simplify, to obtain

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/⟦⟦⟦⟦

⨎ ),𝜔 + 𝑍(𝜗𝜑 ω 𝜗𝜍)
,𝜔 ω 𝑍(𝜗𝜑 ω 𝜗𝜍)

⦅
2

ω ),𝜔 ω 𝑍(𝜗𝜑 ω 𝜗𝜍)
,𝜔 + 𝑍(𝜗𝜑 ω 𝜗𝜍)

⦅
2

This completes the proof.
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B.15 Proof of Claim 13

Let 𝑀, 𝑀± be constants where 𝜗𝜍 ⨎ 𝑀 < 𝑀± ⨎ 𝜗𝜑. We begin by bounding the following:

Pr𝜀,𝜔
❳
𝑋 = 0 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/
(56)

=
Pr𝜀,𝜔

❳
𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀± ( 𝑋 = 0

/
⋜ Pr𝜀,𝜔[𝑋 = 0]

Pr𝜀,𝜔
❳
𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/ (Bayes’ rule)

=
Pr𝜀,𝜔

❳
𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀± ( 𝑋 = 0

/
⋜ Pr[𝑋 = 0]

Pr𝜀,𝜔
❳
𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀± ( 𝑋 = 𝜀

/
⋜ Pr[𝑋 = 𝜀] + Pr𝜀,𝜔

❳
𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀± ( 𝑋 = 0

/
⋜ Pr[𝑋 = 0]

(LIE)

=
Pr𝜀,𝜔

❳
𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀± ( 𝑋 = 0

/
⋜ (1 ω 𝐹𝜔)

Pr𝜀,𝜔[𝑀 ⨎ 9 ⨎ 𝑀± ( 𝑋 = 𝜀] ⋜ (𝐹𝜔)𝜔) + Pr𝜀,𝜔
❳
𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀± ( 𝑋 = 0

/
⋜ (1 ω 𝐹𝜔)

(defn. of 𝑋 and ⋆9𝜀,𝜔)

=
Pr𝜀,𝜔

❳
𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
⋜ (1 ω 𝐹𝜔)

Pr[𝑀 ⨎ 9 ⨎ 𝑀±] ⋜ (𝐹𝜔)𝜔) + Pr𝜀,𝜔
❳
𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
⋜ (1 ω 𝐹𝜔)

(since 𝑋 ⟥ (9, ⋆𝜗𝜀,𝜔))

=
E𝜀,𝜔

⟫
Pr𝜀,𝜔

⟫
𝑀 ⨎ ω𝜗0,𝜔 ω

⦆
𝜀∳𝜕 >𝜗𝜕,𝜔 ⨎ 𝑀±,⦆𝜕∳𝜀 >𝜗𝜕,𝜔

❲❲
⋜ (1 ω 𝐹𝜔)

Pr[𝑀 ⨎ 9 ⨎ 𝑀±] ⋜ (𝐹𝜔)𝜔) + E𝜀,𝜔
⟫
Pr𝜀,𝜔

⟫
𝑀 ⨎ ω𝜗0,𝜔 ω

⦆
𝜀∳𝜕 >𝜗𝜕,𝜔 ⨎ 𝑀±,⦆𝜕∳𝜀 >𝜗𝜕,𝜔

❲❲
⋜ (1 ω 𝐹𝜔)

(LIE and defn. of ⋆𝜗𝜀,𝜔)

=
E𝜀,𝜔

⟫
1𝜔

⟩
ω𝑀 ω⦆

𝜕∳𝜀 >𝜗𝜕,𝜔
⟪
ω 1𝜔

⟩
ω𝑀± ω⦆

𝜕∳𝜀 >𝜗𝜕,𝜔
⟪❲
⋜ (1 ω 𝐹𝜔)

Pr[𝑀 ⨎ 9 ⨎ 𝑀±] ⋜ (𝐹𝜔)𝜔) + E𝜀,𝜔
⟫
1𝜔

⟩
ω𝑀 ω⦆

𝜕∳𝜀 >𝜗𝜕,𝜔
⟪
ω 1𝜔

⟩
ω𝑀± ω⦆

𝜕∳𝜀 >𝜗𝜕,𝜔
⟪❲
⋜ (1 ω 𝐹𝜔)

(defn. of 1𝜔)

The upper bound is

(56) ⨎

1
2
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ) 𝑀

±ω𝑀
,𝜔

+ 𝑍 ⦆ 𝑀
±ω𝑀
,𝜔
[
2
⦅ ⋜ (1 ω 𝐹𝜔)

Pr[𝑀 ⨎ 9 ⨎ 𝑀±] ⋜ (𝐹𝜔)𝜔) +
1
2
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ) 𝑀±ω𝑀

,𝜔
ω 𝑍 ⦆ 𝑀±ω𝑀

,𝜔
[
2
⦅ ⋜ (1 ω 𝐹𝜔)

(Claim 11)

⨎ 𝑒+𝜔 (𝑀± ω 𝑀) (since Pr[⋜] ⨍ 0 and defn. of 𝑒+𝜔 )
⨎ 𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍) (since 𝑒+𝜔 increasing)
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The lower bound is

(56) ⨍

1
2
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ) 𝑀

±ω𝑀
,𝜔

ω 𝑍 ⦆ 𝑀
±ω𝑀
,𝜔
[
2
⦅ ⋜ (1 ω 𝐹𝜔)

Pr[𝑀 ⨎ 9 ⨎ 𝑀±] ⋜ (𝐹𝜔)𝜔) +
1
2
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ) 𝑀±ω𝑀

,𝜔
+ 𝑍 ⦆ 𝑀±ω𝑀

,𝜔
[
2
⦅ ⋜ (1 ω 𝐹𝜔)

(Claim 11)

=

1
2
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ) 𝑀

±ω𝑀
,𝜔

ω 𝑍 ⦆ 𝑀
±ω𝑀
,𝜔
[
2
⦅ ⋜ (1 ω 𝐹𝜔)

𝑀±ω𝑀
𝜗𝜑ω𝜗𝜍

⋜ 𝐹𝜔
𝜔
+ 1

2
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ) 𝑀±ω𝑀

,𝜔
+ 𝑍 ⦆ 𝑀±ω𝑀

,𝜔
[
2
⦅ ⋜ (1 ω 𝐹𝜔)

(since 9 + U!"#$%&[𝜗𝜍, 𝜗𝜑])

= ,𝜔 ω 𝑍(𝑀± ω 𝑀)
2

1ω𝐹𝜔
E𝜀,𝜔⌊𝑍

ω ⟪ω𝑀ω
⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ⋜ ,2𝜔

𝜗𝜑ω𝜗𝜍
⋜ 𝐹𝜔
𝜔
+ ,𝜔 + 𝑍(𝑀± ω 𝑀)

⨍ 𝑒ω𝜔 (𝑀± ω 𝑀) (since 𝐺
ℏ+≨

⨍ 𝐺
≨
ω ℏ ⋜ 𝐺

≨2
)

= ω 2
1 ω 𝐹𝜔

E𝜀,𝜔⌊𝑍
ω ⟪ω𝑀ω

⦆
𝜕∳𝜀 >𝜗𝜕,𝜔⟪
,𝜔 ⌋ ⋜ ,2𝜔

𝜗𝜑 ω 𝜗𝜍
⋜ 𝐹𝜔𝜔 ⋜ ,𝜔 ω 𝑍(𝑀± ω 𝑀)

(,𝜔 + 𝑍(𝑀± ω 𝑀))2

= 𝑒ω𝜔 (𝑀± ω 𝑀) ω ϱ(1) ⋜ 𝑅(1) ⋜ ϱ(,2𝜔) ⋜
𝐹𝜔
𝜔 ⋜ ϱ(,ω1𝜔 )

= 𝑒ω𝜔 (𝑀± ω 𝑀) ω 𝑅 ⦆,𝜔𝐹𝜔𝜔 [

⨍= 𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍) ω 𝑅 ⦆,𝜔𝐹𝜔𝜔 [ (since 𝑒+𝜔 decreasing)

For convenience, let 𝑔𝜀,𝜔(𝑀, 𝑀±) = Pr𝜀,𝜔
❳
𝑋 = 0 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/
. Observe that

E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/
(57)

= 𝑔𝜀,𝜔(𝑀, 𝑀±)E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±,𝑋 = 0

/
+ (1 ω 𝑔𝜀,𝜔(𝑀, 𝑀±))E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±,𝑋 = 𝜀

/

(LIE)

= 𝑔𝜀,𝜔(𝑀, 𝑀±)E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±,𝑋 = 0

/
+ (1 ω 𝑔𝜀,𝜔(𝑀, 𝑀±))E𝜀,𝜔[𝜗𝜀 ( 𝑀 ⨎ 9 ⨎ 𝑀±,𝑋 = 𝜀]

(defn. of ⋆9𝜀,𝜔)
= 𝑔𝜀,𝜔(𝑀, 𝑀±)E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
+ (1 ω 𝑔𝜀,𝜔(𝑀, 𝑀±))E𝜀,𝜔[𝜗𝜀] ((9,𝑋𝜀) ⟥ (𝜗𝜀, ⋆𝜗𝜀,𝜔))
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We want to bound

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝐼𝜀,𝜔

/⟦⟦⟦⟦ (58)

= ⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀±

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ⋆9𝜀,𝜔 ⨎ 𝜗𝜑

/⟦⟦⟦⟦ (defn. of 𝐼𝜀,𝜔)

= ⟦⟦⟦⟦𝑔𝜀,𝜔(𝑀, 𝑀±)E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
+ (1 ω 𝑔𝜀,𝜔(𝑀, 𝑀±))E𝜀,𝜔[𝜗𝜀]

= ω𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)E𝜀,𝜔
❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/
ω (1 ω 𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑))E𝜀,𝜔[𝜗𝜀]⟦⟦⟦⟦ (eq. (57))

= ⟦⟦⟦⟦𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)
⌋
E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/⌈

= +
⌋
𝑔𝜀,𝜔(𝑀, 𝑀±) ω 𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)

⌈
E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/

= +E𝜀,𝜔[𝜗𝜀]
⌋
𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑) ω 𝑔𝜀,𝜔(𝑀, 𝑀±)

⌈ ⟦⟦⟦⟦
⨎ ⟦⟦⟦⟦𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)

⟦⟦⟦⟦ ⋜
⟦⟦⟦⟦E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/⟦⟦⟦⟦
= + ⟦⟦⟦⟦𝑔𝜀,𝜔(𝑀, 𝑀±) ω 𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)⟦⟦⟦⟦ ⋜

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/⟦⟦⟦⟦
= + ⟦⟦⟦⟦𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑) ω 𝑔𝜀,𝜔(𝑀, 𝑀±)⟦⟦⟦⟦ ⋜

⟦⟦⟦⟦E𝜀,𝜔[𝜗𝜀]
⟦⟦⟦⟦ (properties of ⟪ ⋜ ⟪)

⨎ ⟦⟦⟦⟦𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)
⟦⟦⟦⟦ ⋜ ⌣𝜔 + 2 ⟦⟦⟦⟦𝑔𝜀,𝜔(𝑀, 𝑀±) ω 𝑔𝜀,𝜔(𝜗𝜍, 𝜗𝜑)⟦⟦⟦⟦ ⋜ (𝜗𝜑 ω 𝜗𝜍) (Claim 12)

⨎ ⌣𝜔 + 2 ⦆𝑒+𝜔 (𝜗𝜑 ω 𝜗𝜍) ω 𝑒ω𝜔 (𝜗𝜑 ω 𝜗𝜍) + 𝑅 ⦆,𝜔𝐹𝜔𝜔 [[ ⋜ (𝜗𝜑 ω 𝜗𝜍) (bounds on (56))

⨎ ⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [ (since ℏ+1
ℏω1

ω ℏω1
ℏ+1

= 𝑅 (1)ℏ))

This completes the proof.

B.16 Proof of Claim 14

Agent 𝜀’s report >𝜗𝜀,𝜔 in$uences her allocation and the part of her transfers. attributable
to the VCG mechanism (if 𝑋 = 0) or the BDMmechanism (if 𝑋 = 𝜀).

I claim that her payo"s from her report can be represented as purchasing
alternative 𝜛 = 1 at price ⋆9𝜀,𝜔. This is clearly true if agent 𝜀 is dictator (𝑋 = 𝜀) and
participates in the BDMmechanism. Suppose instead that there is no dictator (𝑋 = 0)
and agent 𝜀 participates in the VCG mechanism. There are two cases.

1. If ⋆𝜗𝜀,𝜔 < 0, then agent 𝜀 chooses between (i) alternative 𝜛 = 1 and paying ω𝜔 ⋆𝜗𝜀,𝜔
and (ii) alternative 𝜛 = 0 and paying nothing.

2. If ⋆𝜗𝜀,𝜔 ⨍ 0, then she chooses between (i) alternative 𝜛 = 1 and paying nothing
and (ii) alternative 𝜛 = 0 and paying 𝜔 ⋆𝜗𝜀,𝜔. This is strategically equivalent to
choosing between (i) 𝜛 = 1 and paying 𝜔 ⋆𝜗𝜀,𝜔 and (ii) 𝜛 = 0 and paying nothing.
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Next, we show that the agent’s optimal report >𝜗𝜀,𝜔 is close to her expected value
E𝜀,𝜔[𝜗𝜀]. Fix a constant 0 > 0. For the rest of this proof, we condition agent 𝜀 having a
signal realization such that

⟦⟦⟦⟦E𝜀,𝜔
❳
𝜗𝜀 ( 𝜗𝜍 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝜗𝜑

/
ω E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 ⨎ ω𝜔 ⋆𝜗𝜀,𝜔 ⨎ 𝑀±

/⟦⟦⟦⟦ ⨎ 0 + ⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [

It follows from the triangle inequality, Claim 10, and Claim 13 that this holds with
high probability. Let 𝑀 < E𝜀,𝜔[𝜗𝜀] ω 20± where

0± = 0⌣𝜔 + 𝑅 ⦆ 1,𝜔
+ ,𝜔𝐹𝜔

𝜔 [

Agent 𝜀’s expected payo" from reporting E𝜀,𝜔[𝜗𝜀] ω 20± is

E𝜀,𝜔
❳
1
⌋
𝜗𝜍 ⨎ ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

⌈
⋜
⌋
𝜗𝜀 ω ⋆9𝜀,𝜔

⌈/

= E𝜀,𝜔
❳
1
⌋
𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

⌈
⋜
⌋
𝜗𝜀 ω ⋆9𝜀,𝜔

⌈/

= +E𝜀,𝜔
❳
1
⌋
𝜗𝜍 ⨎ ⋆9𝜀,𝜔 ⨎ 𝑀

⌈
⋜
⌋
𝜗𝜀 ω ⋆9𝜀,𝜔

⌈/

This is greater than her expected payo" from reporting 𝑀 if the following is positive:

E𝜀,𝜔
❳
1
⌋
𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

⌈
⋜
⌋
𝜗𝜀 ω ⋆9𝜀,𝜔

⌈/

= Pr𝜀,𝜔
❳
𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
⋜ E𝜀,𝜔

❳
𝜗𝜀 ω ⋆9𝜀,𝜔 ( 𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
(LIE)

⨍ Pr𝜀,𝜔
❳
𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
⋜
⌋
E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
ω E𝜀,𝜔[𝜗𝜀] + 20±

⌈

⨍ Pr𝜀,𝜔
❳
𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
⋜
⌋
E𝜀,𝜔[𝜗𝜀] ω 0± ω E𝜀,𝜔[𝜗𝜀] + 20±

⌈
(59)

⨍ Pr𝜀,𝜔
❳
𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
⋜ 0±

⨍ 𝐹𝜔
𝜔 ⋜

E𝜀,𝜔[𝜗𝜀] ω 20± ω 𝑀
𝜗𝜑 ω 𝜗𝜍

⋜ 0± (defn. of ⋆9𝜀,𝜔,𝑋 and since 9 + U!"#$%&[𝜗𝜍, 𝜗𝜑])

> 0 (defn. of 𝑀)

Line (59) follows from the de!nition of 0±, provided that

E𝜀,𝜔
❳
𝜗𝜀 ( 𝑀 ⨎ ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/
= E𝜀,𝜔

❳
𝜗𝜀 ( 𝑀 < ⋆9𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] ω 20±

/

This follows from the fact that, conditional on any value 𝑋 ϑ {0, 𝜀} and⦆𝜕∳𝜀 >𝜗𝜕,𝜔, ⋆9𝜀,𝜔 is
continuously-distributed and therefore puts zero probability on any given point 𝑀.
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Altogether, we have shown that the agent 𝜀’s optimal report >𝜗𝜀,𝜔 ⨍ E𝜀,𝜔[𝜗𝜀] ω 20±.
To complete the proof, we use a similar argument to show that >𝜗𝜀,𝜔 ⨎ E𝜀,𝜔[𝜗𝜀] + 20±.

B.17 Proof of Lemma 11

To reduce notation, we implicitly condition on the probability 1 ω 𝐹𝜔 event that no
agent is chosen as dictator. This does not a"ect our conclusions since 𝐹𝜔 → 0.

The di"erence between the expected welfare given mechanism (x𝜔, t𝜔) and
expected welfare under the ex-ante optimal alternative is

E
❳
/
\
E[𝜗𝜀 ( 𝛻] ⋜ 1

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
ω E[𝜗𝜀 ( 𝛻] ⋜ 1 (E[𝜗𝜀] ⨍ 0)

(
)
⦅

(60)

⨍ E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0𝜛 +

𝜔⟨

𝜕=1
>𝜗𝜕𝜛 ⨍ 0

}
⦃
⦄
ω E[𝜗𝜀 ( 𝛻] ⋜ 1 (E[𝜗𝜀] ⨍ 0)

(
)
⦅
ω ♯(1)

(Hoe"ding’s inequality)

We want to show that (60) ⨍ ω♯(1). The key step is the following claim.

Claim 15. The following inequality holds in every equilibrium (s𝜔, >v𝜔, >b𝜔):

E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅

⨍ E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω ♯(1)

Claim 15 relies critically on Lemmas 7 and 8. We leave the proof to Section B.18.
Given this claim, we observe that

(60) ⨍ E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
ω E[𝜗𝜀 ( 𝛻] ⋜ 1 (E[𝜗𝜀] ⨍ 0)

(
)
⦅
ω ♯(1)

At this point, there are two cases to consider.
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1. Suppose that E[𝜗𝜀] < 0. Then

(60) ⨍ E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω ♯(1)

⨍ ω♯(1) (since E[𝑌 ⋜ 1(𝑌 ⨍ 0)] ⨍ 0)

2. Suppose that E[𝜗𝜀] ⨍ 0. Then

(60) ⨍ E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
ω E[𝜗𝜀 ( 𝛻]

(
)
⦅
ω ♯(1)

⨍ E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔
}
⦃
⦄
ω E[𝜗𝜀 ( 𝛻]

(
)
⦅
ω ♯(1)

(since E[𝑌 ⋜ 1(𝑌 ⨍ 0)] ⨍ E[𝑌])

= E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ω E[𝜗𝜀 ( 𝛻]

(
)
⦅
ω ♯(1) (since E

❳
𝜗0,𝜔

/
= 0)

⨍ E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
E𝜕,𝜔

❳
𝜗𝜕
/
ω E[𝜗𝜀 ( 𝛻]

(
)
⦅
ω 𝑅(𝑉1,𝜔 + (𝜗𝜑 ω 𝜗𝜍) ⋜ 𝑉2,𝜔) ω ♯(1)

(Lemma 7)

= E
❳
/
\

1
𝜔

𝜔⟨

𝜕=1
E𝜕,𝜔

❳
𝜗𝜕
/
ω E[𝜗𝜀 ( 𝛻]

(
)
⦅
ω ♯(1) (since 𝑉1,𝜔 → 0 and 𝑉2,𝜔 → 0)

= ω♯(1) (LIE)

In both cases, the di"erence (60) is at least ω♯(1). This completes the proof.

B.18 Proof of Claim 15

Recall that the scoring rule SR evaluates, among other things, agent 𝜀’s ability to
predict the random variable

1( ⋆𝜗𝜀,𝜔 ⨍ 0) = 1
⌈
⌉
{
𝜗0,𝜔 +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
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Consider the following event:

1
⌈
⌉
{
𝜗0,𝜔 +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
∳ 1

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

⥳ 𝜗0,𝜔 +
⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ϑ [ω𝜗𝜑,ω𝜗𝜍]

⥳ 𝜗0,𝜔 ϑ
❳
ω𝜗𝜑 ω ℎ𝜀,𝜔,ω𝜗𝜍 ω ℎ𝜀,𝜔

/
(where ℎ𝜀,𝜔 =

⦆
𝜕∳𝜀 >𝜗𝜕,𝜔)

We want to bound the probability of this event. Observe that

Pr
❳
𝜗0,𝜔 ϑ

❳
ω𝜗𝜑 ω ℎ𝜀,𝜔,ω𝜗𝜍 ω ℎ𝜀,𝜔

//

= E
❳
Pr
❳
𝜗0,𝜔 ϑ

❳
ω𝜗𝜑 ω ℎ𝜀,𝜔,ω𝜗𝜍 ω ℎ𝜀,𝜔

/
( ℎ𝜀,𝜔

//
(LIE)

⨎ 𝜗𝜑 ω 𝜗𝜍
2,𝜔

(since 𝜗0,𝜔 + L*+)*,’(0, ,𝜔))

It follows from the preceding arguments that

1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
⨍ 1

⌈
⌉
{
𝜗0,𝜔 +

⟨

𝜕∳𝜀
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
ω 𝑅9 ⦆

𝜗𝜑 ω 𝜗𝜍
2,𝜔

[ (61)

We will use this observation later on to bound the following expression.

E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅

(62)

= E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
E𝜕,𝜔

❳
𝜗𝜕
/}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅

= +E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔

}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅

(defn. of <𝜕,𝜔)

There are two terms on the right-hand side of equation (62). The !rst one is

E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
E𝜕,𝜔

❳
𝜗𝜕
/}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅

(63)
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⨍ E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
>𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω 𝑅(𝑉1,𝜔 + (𝜗𝜑 ω 𝜗𝜍)𝑉2,𝜔) (by Lemma 7)

⨍ E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
>𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω ♯(1) (since 𝑉1,𝜔 → 0, 𝑉2,𝜔 → 0)

⨍ E
❳
/
\

⌈
⌉
{

𝜗0,𝜔
𝜔 ω

𝜗0,𝜔
𝜔 ⋜ 1(𝜗0,𝜔 ⨍ 0) + 1

𝜔
𝜔⟨

𝜕=1
>𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω ♯(1)

(since 𝜗0,𝜔 ⋜ 1(𝜗0,𝜔 ⨍ 0) ⨍ 𝜗0,𝜔)

⨍ E
❳
/
\

⌈
⌉
{

𝜗0,𝜔
𝜔 + 1

𝜔
𝜔⟨

𝜕=1
>𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄
ω
𝜗0,𝜔
𝜔 ⋜ 1(𝜗0,𝜔 ⨍ 0)

(
)
⦅
ω ♯(1)

(since 𝜗0,𝜔 ⋜ 1(𝜗0,𝜔 ⨍ 0) ⨍ 0)

= E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω ,𝜔

𝜔 ω ♯(1)

(since 𝜗0,𝜔 + L*+)*,’(0, ,𝜔))

= E
❳
/
\

1
𝜔 ⋜

⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕
}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω ♯(1) (since ,𝜔)𝜔 → 0)

The second term on the right-hand side of equation (62) is

E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔

}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

𝜔⟨

𝜕=1
>𝜗𝜕,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅

(64)

⨍ E
❳
/
\

⌈
⌉
{

1
𝜔

𝜔⟨

𝜕=1
<𝜕,𝜔

}
⦃
⦄
⋜ 1
⌈
⌉
{
𝜗0,𝜔 +

⟨

𝐿∳𝜕
>𝜗𝐿,𝜔 ⨍ 0

}
⦃
⦄

(
)
⦅
ω 𝑅 )(𝜗𝜑 ω 𝜗𝜍)2

2,𝜔
⦅ (inequality (61))

⨍ ω𝑅
⟩
𝐴ω1)2𝜔

⟪
ω 𝑅 )(𝜗𝜑 ω 𝜗𝜍)2

2,𝜔
⦅ (Lemma 8)

= ♯(1) (since 𝐴𝜔 →ε, 𝑉1,𝜔 → 0, ,𝜔 →ε)

Plugging inequalities (63) and (64) into equation (62) completes the proof.
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