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Abstract

I incorporate computational constraints into decision theory in order to cap-
ture how cognitive limitations affect behavior. I impose an axiom of computa-
tional tractability that only rules out behaviors thought to be fundamentally hard. I
use this framework to better understand common behavioral heuristics: if choices
are tractable and consistent with the expected utility axioms, they are indistin-
guishable from forms of choice bracketing. Then I show that a computationally-
constrained decisionmaker can be objectively better off if she iswilling to use heuris-
tics that would not appear rational to outside observers.
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1 Introduction

Decisionmakers have only a limited amount of time to make decisions, whether that
means a few seconds or a few years. Yet, making good decisions can be time-intensive.
This paper explores the implications of these two observations for behavior. It does this
by integrating computational constraints into decision theory.

Making good decisions can be especially time-intensive when considering many
related decisions at once. Consider an investor constructing a portfolio on a brokerage
with thousands of tradable assets. Alternatively, consider a consumer buying products
in a city with hundreds of stores. To ensure that they make decisions in a reasonable
amount of time, people tend to narrowly frame their choices. They rely on heuristics
like choice bracketing to break down complicated decisions into many simpler ones
(see e.g. Tversky and Kahneman 1981; Rabin and Weizsäcker 2009; Ellis and Freeman
2020). This can have ameaningful economic impact (see e.g. Choi et al. 2009; Hastings
and Shapiro 2018).

To better understand these heuristics – and the broader implications of computa-
tional constraints for behavior – I propose a model of computationally tractable choice.
Specifically, I impose an axiom of computational tractability, in a model of choice un-
der risk where a decisionmakermakesmany simultaneous decisions. I alsomake other
modeling assumptions, which I discuss later in the introduction.

This tractability axiom is intended to be weak: it only rules out behaviors thought to
be implausible for any algorithm to exhibit in a reasonable amount of time. To see why
intractable choice seems implausible, suppose a decisionmaker could make choices
“as if” they were optimizing according to some known utility function that I call in-
tractable. Then I could convert her choices into efficient solutions to problems – of
great scientific and industrial importance – for which no efficient solutions have been
discovered. That would be remarkable, but seems unlikely.

I use this model of computationally tractable choice to obtain two kinds of results.
First, I show that, under standard rationality assumptions, computational constraints
necessarily lead to choice bracketing. If a decisionmaker’s choices are rational (i.e.
maximize expected utility) and tractable, I show that her choices are observationally
indistinguishable from forms of choice bracketing. I accomplish this by showing that
expected utility maximization is intractable unless the utility function is additively sep-
arable. This demonstrates that even mild computational constraints can substantially
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sharpen our predictions about the decisionmaker’s behavior relative to rationality alone.
Second, I use these results to give a formal justification for behavior that violates

the expected utility axioms. Suppose a decisionmaker wants to maximize the expected
value of a given objective function. If her objective function is not additively separable,
my earlier results imply that exact optimization is intractable. What are the implica-
tions for her behavior? For many objective functions, I show that a computationally-
constrained decisionmaker cannot simultaneously (i) guarantee any non-zero fraction
of her optimal payoff and (ii) have revealed preferences that satisfy the expected util-
ity axioms. The decisionmaker can guarantee a reasonable payoff, but only by using
heuristics that an outside observer would not recognize as rational.

I now discuss the model and results in more detail.

Model. I consider a model of choice under risk. There is a set of items that the de-
cisionmaker can acquire from decisions 𝑖 = 1,… , 𝑛. For example, items may represent
different quantities of money and each decision 𝑖 may represent a different asset that
she can purchase. Alternatively, itemsmay represent different goods and each decision
𝑖 may represent a different store in which she can acquire goods.

The decisionmaker chooses between lotteries, which are high-dimensional random
vectors �⃗� = (𝑋1,… , 𝑋𝑛). Each random variable 𝑋𝑖 determines the item that the deci-
sionmaker receives from decision 𝑖, andmay be correlated with other random variables
𝑋𝑖. A choice correspondence maps a menu of feasible options to the decisionmaker’s
choice �⃗� from that menu. I call choices rational if they maximize expected utility for
some utility function (von Neumann and Morgenstern 1944).

For themost part, I assume that the decisionmaker only cares about the collection of
items she receives, and not whether she earned a given item from decision 𝑖 or decision
𝑗. I relax this assumption in Appendix A.

Computational Tractability. Next, I introduce computation. I assume that people
are unable to solve problems thought to be fundamentally hard.1

More precisely, I rely on a powerful model of computation called the Turing ma-
chine. Thismodel is used in computational complexity theory to studywhat algorithms
can and cannot do. Given an appropriate description of a menu, the Turing machine
outputs a choice from that menuwithin a certain amount of time. The Turingmachine

1This follows the tractable cognition thesis in cognitive science (VanRooij 2008; van Rooij et al. 2019).
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represents the state of the art: up to variations, it is the most powerful model of com-
putation to date. A standard assumption says that any physically-realizable computer
behaves “as if” it is a Turing machine.

A choice correspondence is tractable if it can be generated by a Turing machine
within a reasonable amount of time. I use a definition of “reasonable” that has proven
itself useful in computer science. The decisionmaker is allowed to take longer when
facing a menu that is more complicated to describe, but the time taken must grow at
most polynomially in the length of the description. This definition is used in compu-
tational complexity theory to distinguish problems that computers can plausibly solve
from ones that they cannot. I pair this definition with a computational hardness con-
jecture called P ≠ NP that is commonly used in computational complexity theory to
identify hard problems.

There aremany common objections to the application of computational complexity
theory in economics. I address several of them in Section 3.4. At a minimum, there are
important nuances to keep in mind when raising these objections.

Additional Assumptions. I make two additional assumptions.
First, I make a richness assumption. I assume that the correspondence is defined

over at least (i) binary menus and (ii) product menus. Product menus are menus in
which it is feasible – but not necessarily optimal – to make decision 𝑖 independently of
decision 𝑗. This ensures that narrow choice bracketing is well-defined.

Richness assumptions are essential to many results in decision theory, and mine
are no exception. It is easy to find counterexamples to Theorems 1-4 if one considers
choice correspondences that are not defined over a rich collection ofmenus. Theremay
be value in identifying “anti-richness conditions” that restrict attention to menus of a
particular form in order to avoid tractability concerns. My approach is complementary:
I maintain richness conditions and ask what properties of preferences are needed to
avoid tractability concerns.

Second, I assume that menus are described in a relatively-efficient way. This as-
sumption is important because the tractability of a choice correspondence depends on
how menus are described. To illustrate, consider a grocery store that sells an apple 𝐴,
banana𝐵, and orange𝑂. Amenu could be described inefficiently as “the available bun-
dles are {𝐴, 𝐵, 𝑂}, {𝐴, 𝐵}, {𝐵,𝑂}, {𝐴,𝑂}, {𝐴}, {𝐵}, {𝑂}, and ∅”. That same menu could be
described more efficiently as “the available products are𝐴, 𝐵, and𝑂”. See Section 3.2.1
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for more discussion.
Next, I consider what this framework can tell us about behavior.

Choice Bracketing. What are the implications of rationality and tractability for be-
havior? The answer turns out to be “narrow choice bracketing”.

A decisionmaker narrowly choice brackets if her choice 𝑋𝑖 in decision 𝑖 does not de-
pend on her choice 𝑋𝑗 in another decision 𝑗. This procedure is well-defined (but not
necessarily optimal) on product menus. Theorem 1 shows that rational and tractable
choice correspondences are observationally indistinguishable fromnarrowchoice brack-
eting. Equivalently, it shows that expected utilitymaximization is intractable unless the
utility function is additively separable.2 Figure 1 illustrates.

It follows that a behavioral heuristic – narrow choice bracketing – is not only con-
sistent with but predicted by an essentially standard model of choice with mild compu-
tational constraints. This result is quite strong. For example, it rules out the possibility
that a consumer is less inclined to buy a product if she already owns that product. Al-
ternatively, if the investor cares about total income 𝑋1 + … + 𝑋𝑛 – that is, if she treats
money as fungible – then additive separability implies risk neutrality.3 The strength of
this result can be seen as a positive, since it sharpens behavioral predictions. It can also
be seen as a negative, if the result is too strong to be plausible. My next result explores
this negative interpretation.

Choice Trilemma. Building on my previous result, I revisit a normative question:
should a decisionmaker satisfy the expected utility axioms?

To formalize this, suppose a decisionmaker intrinsically wants to maximize the ex-
pected value of a given objective function. If her objective happens to be additively
separable, she can optimize via narrow choice bracketing. If not, then optimization is
intractable by Theorem 1. In that case, the decisionmaker could still make choices that
appear rational to an outside observer, insofar as they can be rationalized by preferences
that satisfy the expected utility axioms. But then her revealed preferences would not
match her true preferences. Alternatively, she could turn to approximation algorithms

2Additive separability means that the utility function can be represented as 𝑢(𝑥) = 𝑣(𝑥1)+…+𝑣(𝑥𝑛).
Keep in mind that, since this is a model of choice under risk, monotone transformations of additively
separable utility functions are generally not additively separable.

3Even this result may be consistent with empirical evidence that people do not always treat money as
fungible (e.g., Abeler and Marklein 2016, Hastings and Shapiro 2018).
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Narrow choice
bracketingRational Tractable

Figure 1: This diagram depicts the space of choice correspondences. The blue region
consists of rational choice correspondences and the red region consists of tractable
choice correspondences. The intersection of these two regions corresponds to narrow
choice bracketing.

that guarantee her some fraction of her optimal payoff. But then her choices may not
appear rational to the outside observer.

Theorem 2 shows that, for many objective functions4, no rational and tractable
choice correspondence can guarantee a non-zero fraction of the decisionmaker’s opti-
mal payoff. However, there do exist tractable approximation algorithms that can guar-
antee a meaningful fraction of her optimal payoff. These approximation algorithms
violate the expected utility axioms: the choices they make cannot be represented “as
if” they are maximizing expected utility.

Altogether, my results imply an impossibility result, or choice trilemma, that relates
three properties of choice. Figure 2 illustrates.5 For many objectives, a choice corre-
spondence can be tractable and approximately optimal, in that it guarantees a mean-
ingful fraction of the optimal payoff (e.g., 50%). It can be tractable and rational if the
agent is willing to narrowly choice bracket, in which case her revealed preferences are
additively separable. But it cannot satisfy all three properties at once. Given tractabil-
ity, choice correspondences that performwell according to the true objective cannot be
rationalized by preferences that satisfy the expected utility axioms.

To be clear, my results are not only saying that computationally-constrained deci-
sionmakers may fail to optimize. Stated in simpler terms, Theorem 2 suggests that
these decisionmakers may not even behave “as if” they are optimizing. Moreover, the
reasonwhy theymight not behave “as if” they are optimizing is because doing sowould
make them objectively worse off.

4For example, consider an investor whose objective is a sufficiently concave function of wealth.
5This figure was inspired by a similar figure in Akbarpour and Li (2020).
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Figure 2: This diagram depicts the choice trilemma. The blue region connecting ra-
tionality and approximate optimality includes the traditional assumption of exact op-
timization. The green region connecting tractability and approximate optimality cor-
responds to approximation algorithms studied in computer science. The red region
connecting rationality and tractability corresponds to narrow choice bracketing. The
∅ symbol says that the intersection of all three regions is empty.

Related Literature. This paper contributes to three research efforts in economics. I
briefly discuss related literature now and leave detailed discussion to Section 6.

First, I contribute to the literature on bounded rationality. Previous work has in-
troduced computational models of behavior in specific economic settings, such as re-
peated games, learning, and contracting (see e.g. Rubinstein 1986, Wilson 2014, Jakob-
sen 2020, respectively). Many papers rely on specialized models of computation, like
finite automata. Although these models can be very insightful, they often rule out be-
haviors that anyone with access to a computer should be capable of generating. I com-
plement this work by showing that it is still possible to obtain useful insights using a
general model of computation.

Of particular relevance is a pioneering paper by Echenique et al. (2011). Their re-
vealed preference approach to computational complexity anticipates the tractability ax-
iom that I use. In a model of consumer choice, they find that, if a finite dataset of
choices can be rationalized at all, then it can be rationalized by tractable preferences.
Readers familiar with this result may be surprised that tractability has such strong im-
plications in my model. But there are two key differences between their model and
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mine. First, I study choice under risk, whereas they study consumer choice without
uncertainty. Second and more subtly, they ask whether a finite dataset can be ratio-
nalized (following Afriat 1967), whereas I ask whether a choice correspondence can be
rationalized (following Samuelson 1938 and Arrow 1959). I argue in Section 6 that the
first reason is likely to be more relevant for understanding my result.

Second, I contribute to the subfield of economics and computation, which uses
models from computer science to gain insight into economic phenomena. Computa-
tional complexity theory has been applied to classic problems like mechanism design,
Nash equilibrium, and learning (see e.g. Nisan and Ronen 2001, Daskalakis et al. 2009,
Aragones et al. 2005, respectively). In the same spirit, I apply similar methods to an-
other classic problem: choice under risk.

Third, I contribute to the literature on choice bracketing and related phenomena.
There is a sizable experimental and non-experimental literature that finds empirical
evidence of narrow framing, including choice bracketing, mental accounting, and my-
opic loss aversion. There is also a small but growing theoretical literature that includes
axiomatic foundations (Zhang 2021) and models of rational inattention (Köszegi and
Matějka 2020; Lian 2020).

2 Model

In this section, I introduce a standard model of choice under risk. Then I specialize it
to high-dimensional settings where a decisionmaker has many decisions to make.

2.1 Choice under Risk

A decisionmaker chooses a lottery 𝑋 from a finitemenu𝑀 of feasible lotteries.
The lottery 𝑋 is a random variable that takes on values in a space of outcomes 𝒳.6

Formally, let (Ω,ℱ, 𝑃) be a probability space where the sample space Ω = [0, 1] is the
unit interval, ℱ is the Borel 𝜎-algebra, and 𝑃 is the Lebesgue measure. A lottery 𝑋 is a
map from the sample space Ω to the outcome space 𝒳. I restrict attention to lotteries
that can be described using a finite number of bits, in the following sense.

6I define lotteries as random variables, not as distributions over outcomes. This simplifies the nota-
tion in Section 2.2 and onwards. I also use this way of describing lotteries in Assumptions 4 and 5.
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Assumption 1. Restrict attention to lotteries𝑋 whose support is finite and, for every out-
come 𝑥 in the support, 𝑋−1(𝑥) is a finite union of intervals with endpoints 𝑎, 𝑏 ∈ ℚ.7

A choice correspondence 𝑐 describes the agent’s behavior. If the agent is presented
with menu𝑀, then 𝑐(𝑀) describes her choices from that menu. Formally, a collection
of menusℳ describes the universe of possible menus an agent may be presented with.
A choice correspondence 𝑐 maps menus𝑀 ∈ℳ to lotteries 𝑋 ∈ 𝑀, where 𝑐(𝑀) ⊆ 𝑀

and 𝑐(𝑀) ≠ ∅ for every𝑀 ∈ℳ. That is, the agent’s choices 𝑋 ∈ 𝑐(𝑀)must be belong
to menu𝑀, and the agent always chooses at least one lottery 𝑋 ∈ 𝑀 from every menu
𝑀 ∈ ℳ. If 𝑐(𝑀) contains two or more lotteries, this is interpreted as the agent being
indifferent between those lotteries,

The collection ℳ is interpreted as a collection of menus that the decisionmaker
could potentially be faced with. This is a “potential outcomes” interpretation of the
choice correspondence, where 𝑐(𝑀) is the decisionmaker’s choice in the hypothetical
where she is presented with menu𝑀.

Definition 1. A choice correspondence 𝑐 is rational if there exists a utility function 𝑢 ∶

𝒳 → ℝ that such that

∀𝑀 ∈ℳ, 𝑐(𝑀) = argmax
𝑋∈𝑀

E[𝑢(𝑋)]

Rationality as expected utilitymaximizationwas axiomatized by vonNeumann and
Morgenstern (1944). As usual, this does notmean that the decisionmaker explicitly per-
forms any calculations, or that the decisionmaker has an intrinsic objective function
that she wants to maximize. It only says that the agent’s behavior can be rationalized
by preferences that satisfy the expected utility axioms. In that case, they can be repre-
sented as if they maximize expected utility for some utility function 𝑢 that is revealed
from the agent’s choices.

The following assumption ensures that a rational choice correspondence 𝑐 uniquely
identifies its revealed utility function 𝑢, up to affine transformations.

Assumption 2. Restrict attention to collections ℳ that include all binary menus (i.e.,
those with at most two lotteries).

7Intervals can be [𝑎, 𝑏], (𝑎, 𝑏], [𝑎, 𝑏), or (𝑎, 𝑏). I am not aware of an economically-relevant lottery 𝑋
that cannot be closely approximated by another lottery 𝑋′ that satisfies Assumption 1.

8



2.2 High-Dimensional Choice

I specialize this model to focus on high-dimensional choices. This is intended to cap-
ture settings in which a decisionmaker is tasked withmakingmany different decisions.
For example, consider a household that decides how much to invest in many different
assets, or a what products to buy in many different stores.

Items. Fix a finite set of items 𝑆 ⊆ [0, 1] ∩ ℚ that are indexed by rational numbers.
For example, items could represent different products or different quantities of money.
By restricting attention to rational numbers and finite sets 𝑆, I ensure that items 𝑥𝑖 ∈ 𝑆

can always be represented by a finite and bounded number of bits.8 Let {0, 1} ⊆ 𝑆,
where the null item 𝑠 = 0 represents “nothing”.

OutcomesasMultisets. Thedecisionmaker cares about outcomes𝑥, which aremul-
tisets of non-null items 𝑠 ∈ 𝑆 ⧵ {0}. Without loss, let 𝑢(∅) = 0. An outcome is 𝑛-
dimensional if it contains at most 𝑛 elements. For example, outcome 𝑥 = {0.5, 1, 1} is
3-dimensional and consists of one item 𝑠 = 0.5 and two items 𝑠 = 1. Thismight describe
a consumption bundle with one orange and two apples, or an investment portfolio with
one asset worth 50¢ and two assets worth $1.

Why do I exclude null items from the multiset? Consider again a household pur-
chasing products from 𝑛 different stores. Excluding all null items ensures that, all else
equal, increasing the number of stores from 𝑛 to 𝑁 > 𝑛 does not by itself affect the
household’s preferences. More concretely, suppose there is only one store (𝑛 = 1) and
the household prefers “one apple from store 1” to “zero apples from store 1”. If a second
store appears (𝑁 = 2), I am assuming that the household also prefers “one apple from
store 1 and zero apples from store 2” to “zero apples from stores 1 and 2”. That is, the
existence of a second store only affects the household’s preferences over items in the
first store if it actually purchases something from that second store.

Outcomes as Vectors. It will often be more convenient to represent outcomes 𝑥 as
vectors �⃗� = (𝑥1, 𝑥2,…). For dimension 𝑛, let

�⃗�𝑛 = {(𝑥1, 𝑥2,…) ∈ 𝑆∞ ∣ 𝑥𝑖 = 0,∀𝑖 > 𝑛}

8This avoids computational difficulties associated with representing certain numbers.
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In the vector representation, the outcome space is the union

�⃗� =

∞⋃

𝑛=1

�⃗�𝑛

For every vector-outcome �⃗� = (𝑥1, 𝑥2,…), we can construct an outcome 𝑥 by taking
the set {𝑥1, 𝑥2,…} and deleting all null items. Following this process, let 𝜙 ∶ �⃗� → 𝒳

map vector-outcomes to outcomes. Extend the utility function 𝑢 to vector-outcomes by
setting 𝑢(�⃗�) ∶= 𝑢(𝜙(�⃗�)).

The vector representation is not unique. By default, I link the 𝑖th item 𝑥𝑖 with the
𝑖th decision. For example, say a household buys an apple from stores 𝑖 ∈ {1, 3} and
nothing from stores 𝑖 ∉ {1, 3}. The outcome is the multiset 𝑥 = {1, 1}. The default
vector representation is �⃗� = (1, 0, 1, 0, 0,…). Note that 𝜙(�⃗�) = 𝑥.

It is important to my main results (Theorems 1 and 2) that the decisionmaker’s
preferences are over outcomes 𝑥, rather than over vector-outcomes �⃗�. To understand
what this implies about preferences, consider again a household purchasing products
or assets. I am essentially assuming that the household only cares about the items that
she acquires, and not how she acquires them. For example, I assume it is indifferent
between an iPhone acquired from the Apple Store and an iPhone acquired from Best
Buy. Alternatively, I assume it is indifferent between a dollar earned from selling Apple
shares and a dollar earned from selling Best Buy shares.

I relax this assumption in Appendix A. Allowing the decisionmaker to have prefer-
ences over vector-outcomes allows for new interpretations of the model. For example,
let 𝑛 be the number of available products rather than the number of stores. Let item 𝑥𝑖

represent the quantity consumed of product 𝑖. Let 𝑢 ∶ �⃗� → ℝ be a utility function over
vector-outcomes. This is the classic setup in consumer theory.

It would also be reasonable to strengthen this assumption. In particular, it is natural
to assume that a household buying assets only cares about the total amount earned from
those assets, rather thanhow those earnings are distributed across assets. Indeed, this is
standard in the literature on choice bracketing (e.g., Rabin andWeizsäcker 2009), where
outcomes are typicallymonetary. I discuss howmy results change if the household only
cares about the sum of the items. Importantly, the negative implications for expected
utility theory (Theorem 2) do not change.
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Lotteries. I defined lotteries 𝑋 as random outcomes 𝑥. Just as it is convenient to
represent outcomes 𝑥 as vectors �⃗�, it is convenient to represent lotteries 𝑋 as random
vectors �⃗�. In this representation, a vector-lottery �⃗� is a random vector-outcome, i.e.,

�⃗� = (𝑋1,… , 𝑋𝑛, 0, 0,…)

where the partial lotteries 𝑋𝑖 ∶ Ω → 𝑆 are random items. Define a map Φ from vector-
lotteries to lotteries, where

Φ(�⃗�)(𝜔) = 𝜙(�⃗�(𝜔))

The partial lotteries𝑋𝑖may be correlated, since they are defined on the same sample
space Ω. For a household, correlation between partial lotteries might reflect correla-
tion between the returns from different assets. It could also reflect systematic shocks
to its consumption patterns. For example, suppose a household buys groceries with-
out knowing how many people will show up for dinner. If few people show up, the
household may be systematically less likely to consume perishable foods.

Menus. I defined menus𝑀 as sets of lotteries 𝑋. Similarly, let �⃗� be a set of vector-
lotteries �⃗�. For every vector-menu �⃗�, there is a menu𝑀 = Φ(�⃗�), where

Φ(�⃗�) =
{
𝑋 ∈ Φ(�⃗�) ∣ �⃗� ∈ �⃗�

}

Let vector-menu �⃗� be binary if it consists of at most two vector-lotteries. Let ℳ⃗ be the
collection of all vector-menus, i.e.,

ℳ⃗ =
{
�⃗� ∣ Φ(�⃗�) ∈ℳ

}

Finally, extend the choice correspondence 𝑐 to vector-menus by setting

𝑐(�⃗�) ∶= 𝑐(Φ(�⃗�))

Going forward, I omit the “vector” prefix whenever it does not cause confusion.
That is, I refer to outcomes �⃗�, lotteries �⃗�, menus �⃗�, and collections ℳ⃗.

Product Menus. A particular kind of menu – which I call a product menu – plays
an important role in both this paper and the broader literature on choice bracketing.
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Formally, let the partial menus𝑀𝑖 be finite sets of partial lotteries 𝑋𝑖. Then, a product
menu �⃗� is the Cartesian product of 𝑛 partial menus𝑀𝑖, i.e.

�⃗� = 𝑀1 × … ×𝑀𝑛 × {0} × {0}…

Product menus are among the simplest menus that involve “multiple” decisions.
It is difficult to imagine a theory of choice bracketing that does not at least consider
these menus. In particular, the fact that it is possible to choose 𝑋𝑖 ∈ 𝑀𝑖 independently
of 𝑋𝑗 ∈ 𝑀𝑗 means that a decisionmaker can narrowly frame her choices without vi-
olating feasibility constraints. For this reason, much of the experimental evidence of
choice bracketing involves product menus (e.g., Tversky and Kahneman 1981; Rabin
and Weizsäcker 2009). If expected utility theory did not apply to product menus, it
would not be clear how to interpret this evidence. With that in mind, Assumption 3
says that expected utility theory does apply to (at least some) product menus.

Assumption 3. Restrict attention to collections ℳ⃗ that include (but are not necessarily
limited to) all product menus with binary partial menus.

This assumption does not limit the decisionmaker to productmenus. The collection
ℳ⃗ must include binary menus and product menus (Assumptions 2 and 3). But it can
also include menus of other kinds, and enlarging the collection ℳ⃗ would not affect the
statement of my main results (Theorems 1 and 2). It would be natural for future work
to see whether it is possible to obtain even stronger results by requiring other kinds of
menus (e.g., menus with budget constraints).9

Some readers may have in mind additional restrictions on the collection of menus.
Such restrictions could be valuable if they enlarge the set of utility functions for which
expected utility maximization is tractable. However, keep in mind that expected utility
theory is often applied more expansively. For example, the literature on mechanism
design typically considers the collection of all feasible mechanisms, and then evaluates
these mechanisms by assuming agents maximize expected utility. In comparable set-
tings (e.g., multi-item pricing), this corresponds to a much richer collection of menus
than what Assumptions 1 and 3 require.

9Let me briefly comment on budget constraints. In Appendix A, we can interpret outcomes �⃗� as clas-
sical consumption bundles where 𝑥𝑖 denotes the quantity of product 𝑖. Suppose that the decisionmaker
can consume at most one of each product – a reasonable assumption for many household goods (e.g., a
fridge) and digital goods (e.g., a Netflix subscription). Then product menus are a special case of menus
with budget constraints, where the budget is sufficiently large.
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Figure 3: A depiction of a Turing machine, in the process of reading entry 1 on its tape.

3 Computational Tractability

I formalize choice as a computational problem, introducing the necessary concepts
along the way. Then I impose an axiom of computational tractability.

3.1 Choice as Computation

From a computational perspective, a choice correspondence 𝑐 describes a computa-
tional problem.10 A menu is a particular instance of that problem. Choice is a process
by which the decisionmaker takes in a description of themenu �⃗� and outputs a chosen
lottery �⃗� ∈ 𝑐(�⃗�).

I model the decisionmaker as a Turing machine TM whose choice correspondence
𝑐TM reflects the output of TM. A Turing machine is an abstract model of computation
that takes in a string of characters and outputs another string. As depicted in Figure
3.1, a Turing machine consists of a program, a read/write head, and an input/output
tape. The tape is infinite and represents memory. The head can either modify a given
entry of the tape, move to the next entry of the tape, ormove to the previous entry of the
tape. The program maintains a finite set of states and specifies a transition function.
The transition function maps the current state and the symbol on the current entry of
the tape to a new state and instructions for the head (shift left, shift right, or overwrite
the current entry). The initial contents of the tape represent the input and the program
ends when a terminal state is reached. The output is whatever is left on the tape.11

10In general, a choice correspondence may or may not be an optimization problem, but any rational
choice correspondence is an optimization problem since it is equivalent to expected utilitymaximization.

11For a formal definition of the Turing machine, see Chapter 1 of Arora and Barak (2009). Note that
there are many variations on this model, but most are formally equivalent.
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The Turingmachine is amathematically preciseway to describe an algorithm,mak-
ing it possible prove results about what algorithms can and cannot do. As such, the
reader is welcome to think of the Turing machine as an algorithm written in their fa-
vorite all-purpose programming language, like Python or Java. These languages are
typically Turing-complete, which means that they can simulate any Turing machine.
Conversely, the Church-Turing thesis asserts that any physically-realizable computer
can be simulated by a Turing machine.

There are two ways to interpret the analogy between human behavior and Turing
machines. The weak interpretation is that problems that are fundamentally hard for
Turing machines are also hard for humans. The strong interpretation is that the cog-
nitive process underlying human choice can be “efficiently” simulated with a Turing
machine.12 None of my results rely on the strong interpretation.

This analogy is neither new nor untested. It follows the tractable cognition thesis
in cognitive science (e.g., Van Rooij 2008; van Rooij et al. 2019), and aligns with re-
cent applications of computer science to neuroscience (e.g., Papadimitriou et al. 2020).
Across several fields, there is a growing body of empirical evidence consistent with the
hypothesis that humans and other primates struggle to solve computationally- hard
problems (e.g., Murawski and Bossaerts 2016; Oprea 2020; Franco et al. 2021; Banovetz
and Oprea 2023; Hong and Stauffer 2023; Sanjurjo 2023).

3.2 Representing Menus

Having modeled the decisionmaker as a Turing machine, I need to represent menus in
a form that is legible to her. I describe a menu �⃗� with a string 𝑠(�⃗�) of length 𝓁(�⃗�),
written in a standard alphabet. For example, this can represent verbal input from read-
ing a restaurant menu, visual input from scanning shelves in a grocery store, or audio
input from hearing a list of options described.

The description 𝑠(⋅) is an essential primitive of this model, since the same menu
described in two different ways may have different computational properties. This is
an important difference between this model and typical models in economic theory. In
typical models, how a menu is described has no impact. In this model, how a menu
is described plays an important role, and the analyst must be willing to take a stance

12By “efficiently”, I mean that the amount of time it takes a Turing machine to generate behavior is
comparable (e.g., a polynomial function of) the amount of time it takes the cognitive process.
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on how it is described. The widespread evidence of framing effects suggests that how
a menu is described is likely to be empirically relevant as well.

Whenever possible, I assume that menus are described in a simple and relatively-
efficient way. It would be easy to argue that a choice correspondence is intractable if
menus are presented in complicated or obfuscatory ways. Instead, I want to identify
choice correspondences that are intractable even if menus are presented in straightfor-
ward ways.

For my results, I only need to specify the description of binary and product menus.
First, I specify the description 𝑠(�⃗�) of binary menus �⃗�.

Assumption 4. Let �⃗� be a binary menu.

1. Describe items 𝑠 ∈ ℚ as pairs of integers 𝑎, 𝑏 such that 𝑠 = 𝑎∕𝑏.

2. Describe 𝑛-dimensional outcomes �⃗� as a list of items 𝑥1,… , 𝑥𝑛.

3. Describe partial lotteries 𝑋𝑖 as a list of pairs [𝑥𝑖,Ω′] where Ω′ ⊆ Ω is an interval
with endpoints 𝑎, 𝑏 ∈ ℚ where 𝑋𝑖(Ω

′) = {𝑥𝑖}. This list is finite by Assumption 1.

4. Describe 𝑛-dimensional lotteries �⃗� as an ordered list of partial lotteries 𝑋1,… , 𝑋𝑛.

5. The description 𝑠(�⃗�) is an ordered list of lotteries �⃗� ∈ �⃗�.

Next, I specify the description 𝑠(�⃗�) of product menus �⃗�. This description is effi-
cient since it takes advantage of the simple structure of product menus.

Assumption 5. Let �⃗� be an 𝑛-dimensional product menu.

1. Describe partial lotteries as in Assumption 4.

2. Describe partial menus𝑀𝑖 as a list of partial lotteries 𝑋𝑖.

3. The description 𝑠(�⃗�) is an ordered list of partial menus𝑀1,… ,𝑀𝑛.

The description length 𝓁(�⃗�) of a product menu �⃗� is bounded by a function of three
parameters. Let lotteries 𝑋 ∈ �⃗� be 𝑛-dimensional. Let partial lotteries 𝑋𝑖 be measur-
able with respect to 𝑚 intervals [𝑎𝑖, 𝑏𝑖] ∈ Ω in the sample space. Finally, let partial
menus𝑀𝑖 consist of 𝑘 partial lotteries. Then

𝓁(�⃗�) = 𝑂(𝑛𝑚𝑘)
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In contrast, the size of a product menu �⃗� is𝑂(𝑘𝑛). This difference is what makes high-
dimensional optimization hard: product menus that can be described in only 𝑂(𝑛)
characters require the agent to choose from asmany as 𝑘𝑛 lotteries. Note that this prop-
erty is not unique to product menus. For example, menus with budget constraints have
this feature as well (see e.g., the knapsack problem).

3.2.1 Discussion

An alternative way to describe product menus would be to present an ordered list of
all the lotteries �⃗� ∈ �⃗�, rather as an ordered list of partial menus𝑀1,… ,𝑀𝑛. This may
seem natural in the abstract, but is arguably less relevant in practice.

For example, consider a grocery store that sells an apple𝐴, banana 𝐵, and orange𝑂.
The alternative would describe a menu as “the available bundles are {𝐴, 𝐵, 𝑂}, {𝐴, 𝐵},
{𝐵,𝑂}, {𝐴,𝑂}, {𝐴}, {𝐵}, {𝑂}, and ∅”. But the store could describe this menu more effi-
ciently as “the available products are 𝐴, 𝐵, and 𝑂”. That is roughly in line with As-
sumption 5. The latter description appears more similar to the way that a grocery store
presents its “menu” to consumers in practice.

In this example, there are only 𝑛 = 3 products. As the number of products grows,
the alternative description length would grow exponentially in 𝑛. That is, it would take
an unreasonable amount of time for consumers to even understand what bundles are
feasible, let alone choose an optimal bundle.

Technically, this alternative description of menus would make it easier for the de-
cisionmaker to optimize. This is because I defined the time constraint as scaling with
the description length. If the description length grows exponentially with 𝑛, then an
algorithm whose runtime is exponential in 𝑛 would still have a runtime that is linear
in the description length. To avoid this counterintuitive result, I could insist on a time
constraint that scales nicely with 𝑛.13

3.3 Computationally Tractable Choice

A choice correspondence 𝑐 is computationally tractable if there exists an algorithm that
generates the agent’s choice 𝑐(𝐿) from any given menu 𝐿 within a reasonable amount

13The main drawback here is that this would be more cumbersome to define, as I would also need to
keep track of other parameters (like the cardinality of the partial menus) that can affect runtime.
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of time. Formally, Turing machine TM generates choice correspondence 𝑐 if

∀�⃗� ∈ ℳ⃗, 𝑐TM(�⃗�) ⊆ 𝑐(�⃗�) (1)

The time it takes for the decisionmaker to make a choice 𝑐TM(�⃗�) from menu �⃗� is the
number of steps taken by TM before it arrives at its output. I call this runtimeTM(�⃗�).
Naturally, decisionmakers may take more time to make a decision on menus that have
more lotteries or are otherwisemore complicated. Time constraints restrict howquickly
the runtime increases as the menu becomes more complicated.

Definition 2. A time constraint 𝑇 is a function 𝑇 ∶ ℕ → ℝ+ that maps a description
length 𝓁(�⃗�) to a maximum runtime 𝑇(𝓁(�⃗�)). Turing machine TM satisfies 𝑇 if

runtimeTM(�⃗�) ≤ 𝑇(𝓁(�⃗�)) ∀�⃗� ∈ ℳ⃗ (2)

In order to define computational tractability, I need to take a stand on what con-
stitutes “a reasonable amount of time.” I try to err on the side of being conservative; I
prefer to call implausible behavior tractable in order to avoid calling plausible behavior
intractable.

Definition 3. A choice correspondence 𝑐 is tractable if there is a TuringmachineTM and
a polynomial time constraint 𝑇(𝑙) = 𝑂(poly(𝑙)) where:

1. TM generates the choice correspondence 𝑐, as in condition (1).

2. TM satisfies the time constraint 𝑇, as in condition (2).

It is tempting to interpret tractability as an “as is” property, in contrast to “as if”
properties like rationality. However, computational tractability has been so influen-
tial in computer science precisely because it is an “as if” property. Put differently, the
Church-Turing thesis contends that physically-realizable computers behave “as if” they
were Turing machines, not that they are literally Turing machines.

Like rationality, I define tractability as a property of the choice correspondence. Ra-
tionality says there exists a utility function that could rationalize choices, but does not
say that it has a physical manifestation. Tractability says there exists a Turing machine
that could generate choices in a reasonable amount of time, but does not say that it has
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a physical manifestation. Theorem 1 asks when these two “as if” properties are com-
patible, without making any normative claims. Theorem 2 asks whether it is desirable
to be “as if” rational in the presence of computational constraints.

3.4 Discussion

Finally, I comment on several aspects of this framework.

Computational Hardness Assumptions. Most results in computational complex-
ity theory rely on computational hardness conjectures, andmine are no exception. The
most famous conjecture is P ≠ NP, which I state and motivate in Appendix B.1. Al-
though unproven, this conjecture is ubiquitous in computational complexity theory
and widely believed to be true. For example, in a 2018 poll of theoretical computer
scientists, 88% of respondents believed P ≠ NP (Gasarch 2019).

Worst-Case Complexity. Readers familiar with computational complexity theory
will know the distinction between worst-case runtime and other measures of complex-
ity, like average-case runtime. This model is worst-case in the sense that the decision-
maker cannot exceed the time constraint under any circumstance. For example, if the
decisionmaker lives for 100 years, they must make their decision within 100 years, re-
gardless of whichmenu �⃗� ∈ ℳ⃗ they are presentedwith. An average-casemodel would
allow the decisionmaker to take 150 years in one menu �⃗�, provided that they take no
longer than 50 years in an “equally likely” menu �⃗�′. This is not reasonable for a deci-
sionmaker that lives for 100 years.

The fact that the decisionmaker cannot exceed the time constraint does not mean
that algorithms with good average-case runtime are useless. In principle, the decision-
maker could rely on an algorithm 𝐴 that tends to be fast, and switch to another algo-
rithm 𝐵 if𝐴 happens to take too long. This procedure can be formalized as a third algo-
rithm 𝐶, which satisfies the time constraint as long as 𝐵 does. However, the algorithm
𝐶 is unlikely to satisfy standard rationality assumptions. By Definition 1, rationality
forces the decisionmaker to optimize in every menu �⃗� ∈ ℳ⃗, not only in “typical”
menus. As I discuss in Section 7, there may be value in developing weaker notions of
rationality that allow agents to make mistakes, at least in “atypical” menus.
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PolynomialTime. Thenotion that “polynomial time” defines the boundary between
tractable and intractable is common in computational complexity theory. This reflects
a belief that any algorithmwhose runtime is exponential in the description length 𝑙will
take an unreasonable amount of time unless 𝑙 is quite small. Clearly the converse is not
true: an algorithm whose runtime is polynomial in 𝑙 need not be quick. For example,
an algorithm that requires 𝑂(𝑙100) steps runs in polynomial time but is unlikely to be
feasible in practice. Furthermore, even 𝑂(𝑙) problems, like adding two numbers, can
be challenging for human beings if 𝑙 is large. In that sense, tractability rules out only
the very hardest problems.

Asymptotics. Computational tractability is an asymptotic concept. The time con-
straint bounds the rate at which the runtime increases as the problem scales. Asymp-
totics are dominant in computational complexity theory because they make it possible
to identify problems that are hard in a fundamental sense, irrespective of details like
hardware specifications or cognitive ability.

Just like in econometrics, whether the scale of a problem is large enough for the
asymptotic theory to have practical relevance is ultimately an empirical matter. Ex-
perimental evidence suggests that computational burden starts to have an impact at
relatively small scales (e.g., Murawski and Bossaerts 2016; Oprea 2020).

Moreover, real-world decisions are often at a scale where asymptotic approxima-
tions seem likely to bind.14 After all, households routinely purchase goods in cities
with hundreds of competing stores and invest in brokerages that offer thousands of
available assets. Looking ahead to the generalized results in Appendix A, consumers
often purchase goods from stores with hundreds or thousands of products.15 These
high-dimensional environments are very common in practice, and worth studying.

Choice Bracketing with Two Decisions Much of the experimental evidence for
choice bracketing involves only two decisions. It is tempting to say that an asymptotic
theory cannot have anything to say about a phenomenon that arises even when the
number of decisions is small. However, it is important to distinguish between the num-

14The reason why these decisions do not seem so daunting in practice may be because – in line with
my results – we use heuristics to reduce the number of stores or assets we consider at once.

15Note that what is relevant is the number of available products, not the number of products that the
consumer actively considers. Consideration sets can be thought of as a response to complexity, and are
consistent with the dynamic choice bracketing heuristic.
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ber of decisions an individual makes in a particular experiment (which may be small)
and, say, the number of decisions they make on a given day (whichmay be large). If in-
dividuals adopt heuristics like choice bracketing in response to the complexity of their
lives, rather than to the complexity of an experiment they participate in, then even sim-
ple experiments will find evidence of this.

Simple vs. ComplexMenus. It is important to keep in mind that the complexity of
menus is distinct from the complexity of choice behavior. (Of course, both are interest-
ing and important topics, and progress in one can complement progress in the other.)
More formally, computational tractability is a property of a choice correspondence 𝑐,
rather than a property of a menu �⃗�. It has little to say about what makes one menu
“simpler” than another.

The advantage of studying the complexity of choice correspondences is that we
can make statements that are algorithm-independent (e.g., no algorithm can generate
choices 𝑐 in polynomial time). In principle, that allows us to make statements that ap-
ply regardless of what procedures people use to make decisions, and regardless of how
those procedures change across populations and over time.

In contrast, the amount of time taken to optimize in a given menu is inherently
algorithm-dependent. To see this, consider any menu �⃗�∗, and let �⃗�∗ be the optimal
bundle. Define a Turing machine TM that always outputs �⃗�∗. Although this algorithm
may fail to optimize in menu �⃗� ≠ �⃗�∗, it always optimizes – and does so quickly –
for menu �⃗�∗. However, that does not mean that menu �⃗�∗ is “simple” and menu �⃗� is
“complex”, since a different Turing machine might optimize quickly for menu �⃗� and
fail to optimize – or optimize slowly – in menu �⃗�∗.

Optimizing “subject to” Time Constraints. It is tempting to think of computa-
tional tractability as analogous to a budget constraint, and to seek a model where the
decisionmakermaximizes expected utility “subject to” a time constraint. However, this
analogy is misleading. Budget constraints are properties of menus �⃗�. In contrast,
tractability is a property of the entire choice correspondence 𝑐. Tractability is best un-
derstood as an axiom, in the decision-theoretic sense, which constrains how choices
vary as the menu changes.

With that said, it is possible consider a decisionmaker that seeks a “constrained
optimal” choice correspondence, where the constraint is tractability. This is essentially
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what I do in Section 5. However, choosing between tractable choice correspondences
means trading off performance in some menus �⃗� with performance in other menus
�⃗�′. There are many ways to formalize “constrained optimal”, depending on how one
aggregates performance across different menus.

4 Choice Bracketing

This section relates narrow choice bracketing to rational and tractable choice corre-
spondences. I begin by defining narrow choice bracketing.

4.1 Narrow Choice Bracketing

Choice bracketing partitions the set of decisions 𝑖 into brackets 𝐵 ⊆ {1,… , 𝑛}, and then
optimizes separately within each bracket. Narrow choice bracketing, as I define it, con-
siders each decision in isolation. That is, there are 𝑛 brackets 𝐵𝑖 = {𝑖}.

Formally, let 𝑐𝑖(�⃗�) ⊆ 𝑀𝑖 be partial choices from product menu �⃗�. More precisely,
if �⃗� ∈ 𝑐(�⃗�) is a lottery chosen from menu �⃗�, then 𝑋𝑖 ∈ 𝑐𝑖(�⃗�).

Definition 4. A choice correspondence 𝑐 represents narrow choice bracketing if there ex-
ists a value function 𝑣 ∶ 𝑆 → ℝ over items in 𝑆 where, for any product menu �⃗� and
coordinate 𝑖,

𝑐𝑖(�⃗�) = arg max
𝑋𝑖∈𝑀𝑖

E[𝑣(𝑋𝑖)]

Narrow choice bracketing can be rationalized by additively separable utility. Es-
sentially, additive separability says that the decisonmaker’s marginal utility from an
additional item does not depend on items that she already has.

Definition 5. A utility function 𝑢 is additively separable if there exists a value function
𝑣 ∶ 𝑆 → ℝ where, for any outcome �⃗� ∈ �⃗�,

𝑢(�⃗�) =

∞∑

𝑖=1

𝑣(𝑥𝑖)
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Proposition 1. A choice correspondence 𝑐 represents narrow choice bracketing if and
only if it reveals an additively separable utility function.16

I stress that additive separability is a strong property. I consider a model of choice
under risk, so choice is generally not preserved undermonotone transformations of the
utility function. For example, 𝑢(�⃗�) =

∑𝑛

𝑖=1
𝑥𝑖 and 𝑢′(�⃗�) =

√
∑𝑛

𝑖=1
𝑥𝑖 lead to different

choices. This stands in contrast to other models where additive separability follows
from relatively mild restrictions on preferences (e.g., Debreu 1960).

Narrow Choice Bracketing and Computation. Why might narrow choice brack-
eting reduce the computational complexity of choice? Because it reduces the effective
dimension of a high-dimensional optimization problem.

To seewhydimensionality drives computational hardness, consider brute-force search,
a simple algorithm that optimizes within a product menu �⃗� by searching over every
lottery �⃗� ∈ �⃗� and evaluating its expected utility E[𝑢(𝑋)]. If the lotteries �⃗� ∈ �⃗� are
𝑛-dimensional and partial menus𝑀𝑖 consist of 𝑘 partial lotteries, then the number of
lotteries �⃗� ∈ �⃗� that brute-force search evaluates is 𝑘𝑛. If partial lotteries 𝑋𝑖 are mea-
surable with respect to the same𝑚 intervals in the sample space, the runtime is on the
order of 𝑂(𝑚𝑘𝑛).

The runtime of brute-force search on a product menu is exponential in the descrip-
tion length of themenu. To see this, recall that the description length 𝓁(�⃗�) of a product
menu �⃗� is on the order of 𝑂(𝑛𝑚𝑘). Clearly,𝑚𝑘𝑛 is not a polynomial function of 𝑛𝑚𝑘.
Moreover, it is the dimension 𝑛 (not 𝑘 or𝑚) that is the key bottleneck.

A decisionmaker that narrowly brackets avoids the curse of dimensionality by trans-
forming one 𝑛-dimensional optimization problem into 𝑛 different 1-dimensional opti-
mization problems. Brute-force search on each partial menu𝑀𝑖 only needs to evaluate
𝑘 partial lotteries. Since there are 𝑛 partial menus, the total runtime is on the order of
𝑂(𝑛𝑚𝑘). This is polynomial in the description length.

Narrow choice bracketing is fast, but it is only optimal when the utility function
𝑢 is additively separable. When 𝑢 is not additively separable, a different algorithm is

16This follows immediately from the observation that

argmax
�⃗�∈�⃗�

E[

∞∑

𝑖=1

𝑣(𝑋𝑖)] = argmax
�⃗�∈�⃗�

∞∑

𝑖=1

E[𝑣(𝑋𝑖)] = (arg max
𝑋𝑖∈𝑀𝑖

E[𝑣(𝑋𝑖)])

𝑛

𝑖=1

where the left side maximizes additively separable utility and the right side is narrow choice bracketing.
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needed. Brute-force searching the entire menu �⃗� maximizes expected utility, but can
be extremely slow. Theorem 1 asks whether there is any algorithm, among all possible
algorithms, that (i) maximizes expected utility for 𝑢 and (ii) is meaningfully faster than
brute-force search. We turn to that result now.

4.2 Representation Theorem

I relate rational and tractable choice correspondences with additively separable utility
functions. This is indistinguishable from narrow choice bracketing (Proposition 1).

To state Theorem 1, I need to define efficiently computable utility functions. Note
that this property will be an implication of my result, not an assumption.

A utility function 𝑢 is efficiently computable if there exists a reasonably quick algo-
rithm that computes𝑢(𝑥)with atmost 𝜖 imprecision. The caveat is that utility functions
are only identified up to affine transformations, sowe need a normalization. Given util-
ity function 𝑢 over 𝑛-dimensional outcomes �⃗�, the normalized utility is:17

𝑢𝑛(�⃗�) =
𝑢(�⃗�) − min𝑥′

1
,…,𝑥′𝑛

𝑢
(
𝑥′
1
,… , 𝑥′𝑛, 0, 0,…

)

max𝑥′
1
,…,𝑥′𝑛

𝑢
(
𝑥′
1
,… , 𝑥′𝑛, 0, 0,…

)
−min𝑥′

1
,…,𝑥′𝑛

𝑢
(
𝑥′
1
,… , 𝑥′𝑛, 0, 0,…

)

Effectively, this renormalizes the utility function separately for each 𝑛.

Definition 6. A utility function 𝑢 is efficiently computable if there exists a Turing ma-
chine that takes in a constant 𝜖 ∈ [0, 1] and 𝑛-dimensional outcome 𝑥 ∈ 𝒳, and then
outputs a real number 𝑦 such that the normalized utility function 𝑢𝑛 satisfies

𝑦 − 𝜖 ≤ 𝑢𝑛(�⃗�) ≤ 𝑦 + 𝜖

with runtime 𝑂(poly(𝑛, 1∕𝜖)).

Efficient computability of utility functions ismuchweaker than tractability of choice
correspondences, and unrelated to additive separability. Being able to evaluate given
outcomes is very different from being able to optimize over large sets of lotteries. It is
difficult to think of non-contrived utility functions that violate this property.

Theorem 1. Let choice correspondence 𝑐 be rational and tractable. If P ≠ NP, then 𝑐
reveals an additively separable and efficiently computable utility function.

17If 𝑢(�⃗�) is constant for all 𝑛-dimensional outcomes �⃗�, let 𝑢𝑛(�⃗�) = 0.
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I provide an outline of the proof of Theorem 1 in Appendix B, and then prove a
leading special case. I leave the full proof to the Supplemental Appendix.

This result has two immediate implications. First, it provides a foundation for nar-
row choice bracketing. Second, it provides a very strong restriction on the utility func-
tion based on seemingly weak assumptions. Consider an investor who only cares about
total earnings, i.e.

𝑢(�⃗�) = 𝑓 (𝑥1 + 𝑥2 + …)

Theorem 1 suggests that expected utility maximization is tractable only if 𝑓 is linear.
That is, either the investor fails to maximize expected utility, or she is risk-neutral.

Next, I provide a partial converse. This converse is partial in two senses. First, it
restricts attention to product menus, where narrow choice bracketing is well-defined.
Second, it does not show that exact optimization is tractable, but rather that choosing
a lottery that is within 𝜖 > 0 of optimal is tractable.

Definition 7. Fix utility function 𝑢. Then 𝜖-expected utility maximization is tractable if,
for all 𝜖 > 0, there is a tractable choice correspondence 𝑐𝜖 where, for all menus �⃗� ∈ ℳ⃗,

max
�⃗�∈𝑀

E
[
𝑢𝑛(�⃗�)

]
− E

[
𝑢𝑛(𝑐𝜖(�⃗�))

]
≤ 𝜖

Proposition 2. Let utility function 𝑢 be additively separable and efficiently computable.
Then 𝜖-expected utility maximization is tractable on the collection of product menus.

Proposition 2 follows immediately from the fact that narrow choice bracketing is
without loss of optimality for additively separable utility functions, and can be imple-
mented in polynomial time. This argument does not generalize beyond product menus
because narrow bracketing is only defined on product menus.18Furthermore, it only
ensures 𝜖-expected utility maximization because of the 𝜖-imprecision in evaluating the
utility from any given outcome. This kind of numerical imprecision means that, in
principle, narrow choice bracketing could fail to distinguish between two outcomes
that the decisionmaker is close to (but not exactly) indifferent to.

Before turning to the choice trilemma, I briefly discuss results left to Appendix A.
18On binary menus �⃗�, expected utility maximization is tractable even if 𝑢 is not additively separable.

A simple brute-force search algorithm evaluates the two lotteries �⃗� ∈ �⃗� and chooses the better one.
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4.3 Dynamic Choice Bracketing

I assumed in Section 2 that the decisionmaker has preferences over the collection of
items she obtains (outcomes 𝑥 asmultisets) rather than the order in which she acquires
items (outcomes �⃗� as vectors). This seems natural for a household buying products
from 𝑛 different stores or investing in 𝑛 different assets, but it rules out applications
like a household buying 𝑛 different products from a single store.

In Appendix A, I allow the decisionmaker to have preferences over both the items
she obtains and the order in which she obtains them. Effectively, this relaxes the ratio-
nality assumption and reveals a richer class of tractable heuristics. I characterize these
heuristics and relate them to a generalization of additive separability.

In particular, I generalize choice bracketing to dynamic choice bracketing. In the
spirit of dynamic programming, the decisionmaker considers choices 𝑋𝑖 sequentially.
Her choice of 𝑋𝑖 only depends on a small number of choices 𝑋𝑗 that she has not yet
considered, in addition to choices 𝑋𝑘 that she has already considered. This preserves
the tractability of choice bracketing but allows for richer patterns of behavior.

To understand dynamic choice bracketing, consider an example. Let a consumer
have preferences over (i) location, (ii) sunscreen, and (iii) winter coats. Even if her
preferences over sunscreen and coats are separable, the availability of sunscreen may
influence her need for a coat by affecting where she wants to live. She can dynami-
cally bracket her choices by making a consumption plan conditional on her location,
consistent with narrow choice bracketing, and only then deciding where to live.

Theorems 3 and 4 relate rational and tractable choice correspondences to dynamic
choice bracketing. As in Theorem 1, it is useful to restate this result in terms of a sep-
arability property. Theorem 3 shows that expected utility maximization is intractable
unless the utility function is Hadwiger separable. This property is a novel relaxation of
additive separability that allows for some complementarity and substitutibility across
decisions, but limits their frequency. Like additive separability, this is a strong restric-
tion relative to rationality, which only requires that the utility function be continuous.
Theorem 4 shows that this result is relatively tight.
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5 Choice Trilemma

In this section, I establish the choice trilemma. In the presence of computational con-
straints, the choice trilemma suggests that the decisionmaker may be better off if she is
willing to make choices that would appear irrational to an outside observer.

To motivate the exercise, consider a decisionmaker that intrinsically cares about
expected utility for some utility function �̄�. I refer to �̄� as her objective function, to
distinguish it from the revealed utility function 𝑢. The objective function is what the
decisionmaker intrinsically cares about, like profits or pleasure, whereas revealed util-
ity is any utility function that rationalizes the decisionmaker’s choices.

In the presence of computational constraints, maximizing the expected value of an
objective function �̄� may be intractable. Theorem 1 implies that it will be intractable
whenever �̄� is not additively separable. In that case, the decisionmaker has one of two
options. First, she can make choices that are both tractable and rational, in that they
satisfy the expected utility axioms, or equivalently, they maximize expected utility for
some utility function 𝑢. Since these choices are tractable, it must be that 𝑢 ≠ �̄�. Second,
she can make choices that are tractable but violate the expected utility axioms.

When optimal choice according to �̄� is intractable, the decisionmaker may settle
for tractable choices that are only approximately optimal. For example, she may prefer
a choice correspondence that guarantees her at least half of the optimal payoff in any
given menu, relative to one that may perform even worse. Theorem 2 asks whether we
should expect this decisionmaker’s choices to satisfy the expected utility axioms.

5.1 Approximate Optimality

To reason about approximate optimality, I turn to the approximation ratio. This mea-
sure of approximate optimality is widely used in computer science to evaluate approx-
imation algorithms for intractable problems. It is also common in mechanism design
(e.g. Hartline and Lucier 2015; Feng and Hartline 2018; Akbarpour et al. 2023).

To simplify the definition of the approximation ratio, restrict attention to objective
functions �̄� where �̄�(0, 0,…) = 0 and �̄�(�⃗�) ≥ 0 for all �⃗� ∈ �⃗�.

Definition 8. Let �̄� be an objective function. Then APX�̄�
𝑛(𝑐) is the approximation ratio
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achieved by choice correspondence 𝑐, where for any 𝑛-dimensional product menu �⃗�,

APX
�̄�
𝑛(𝑐) ≤

min�⃗�∈𝑐(�⃗�) E
[
�̄�(�⃗�)

]

max�⃗�′∈𝑀 E
[
�̄�(�⃗�′)

]

When there are multiple lotteries 𝑋,𝑋′ ∈ 𝑐(𝑀) that the decisionmaker is indiffer-
ent between, this definition breaks ties against the decisionmaker. To see why this is
necessary, consider the choice correspondence 𝑐(𝑀) = 𝑀 that is indifferent between
every possible option. This choice correspondence is not compelling, but achieves an
approximation ratio of 1 if I break ties in favor of the decisionmaker.

The approximation ratio is a reasonable way to measure approximate optimality,
and it is widely used. However, I do not claim that it is the only reasonable way.

5.2 Rationality versus Approximate Optimality

Theorem 2 highlights a tension between three properties: rationality, tractability, and
approximate optimality. For many objective functions, a choice correspondence 𝑐 may
satisfy any two of these properties at once, but not all three. In these cases, choice
correspondence that is tractable and approximately optimal must violate rationality.

Theorem 2. If P ≠ NP, there exists an objective function �̄� where the following are true.

1. Let the choice correspondence 𝑐 be rational and tractable. Then 𝑐 fails to achieve
any constant approximation ratio, i.e.

lim
𝑛→∞

APX
�̄�
𝑛(𝑐) = 0

2. There exists a tractable (but not rational) choice correspondence 𝑐′ where

APX
�̄�
𝑛(𝑐

′) ≥ 1∕2

The proof is constructive and identifies a large class of objective functions where
the result applies. For example, it applies to the following three objective functions:

�̄�(�⃗�) =
√
𝑥1 + 𝑥2 + … �̄�′(�⃗�) = log(𝑥1 + 𝑥2 + …) �̄�′′(�⃗�) = max{𝑥1, 𝑥2,…}
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I leave further details to the proof outline in Appendix B.4.
Theorem 2 is a key contribution of this paper, and it would not be possible without

the characterization in Theorem 1. Stated in simpler terms, Theorem 2 suggests that
computationally-constrained decisionmakers may not even behave “as if” they are op-
timizing. The reason why they might not behave “as if” they are optimizing is because
doing so would make them objectively worse off. This is particularly striking because
the “as if” formulation of rationality is often used to reconcile the assumption that peo-
ple are optimizers with the fact that optimization is hard in practice (e.g., Friedman
1953). Theorem 2 challenges this argument.

Finally, readers that do not find the approximation ratio compelling may prefer the
following result. I begin with a property that any measure of approximate optimality
should satisfy: respect for weak dominance.

Definition 9. Let 𝑐, 𝑐′ be choice correspondences. Then 𝑐′ weakly dominates 𝑐 if

E
[
�̄�(𝑐′(�⃗�))

]
≥ E

[
�̄�(𝑐(�⃗�))

]

for all product menus𝑀, where the inequality is strict for at least one menu.

The next corollary strengthens Theorem 2. Rather than compare a rational and
tractable choice correspondence 𝑐 with a tractable and approximately-optimal choice
correspondence 𝑐′, I compare it with a tractable and approximately-optimal choice cor-
respondence 𝑐′′ that weakly dominates 𝑐. Any reasonable notion of approximate op-
timality should agree that 𝑐′′ is weakly better than 𝑐. The approximation ratio is only
used to break ties; it gives a sense in which 𝑐′′ is strictly better than 𝑐.

Corollary 1. Let �̄� be an efficiently computable objective functionwhere Theorem2holds.
Let the choice correspondence 𝑐 be rational and tractable. If P ≠ NP, there exists a
tractable (but not rational) choice correspondence 𝑐′′ that weakly dominates 𝑐, where19

APX
�̄�
𝑛(𝑐

′′) ≥ 1∕2

19Define 𝑐′ as in Theorem 2. Generate 𝑐′′ as follows. First, given a product menu 𝑀, compute �⃗� ∈

𝑐(�⃗�) and �⃗�′ ∈ 𝑐′(�⃗�). Second, evaluate E
[
�̄�(�⃗�)

]
and E

[
�̄�(�⃗�′)

]
, and choose the better of {�⃗�, �⃗�′}.
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6 Related Literature

This work contributes to three research efforts in economics.

Bounded Rationality. There is a longstanding effort to incorporate bounded ratio-
nality in economic models. I discuss models that are most similar to mine.

Of particular relevance is Echenique et al. (2011), an insightful paper that integrates
computational constraints into consumer theory. My tractability axiom is a variant of
their “revealed preference approach to computational complexity”. Specifically, they
propose only ruling out utility functions for which maximization is computationally
hard and evaluate the implications for observed behavior. A utility function over bun-
dles is tractable if there exists a polynomial-time algorithm that maximizes the con-
sumer’s utility subject to budget constraints. They obtain the following result in several
models of consumer choice: if a finite dataset of choices can be rationalized at all, then
it can be rationalized by tractable preferences.

There are two possible reasonswhyEchenique et al. (2011) and I obtain such starkly
different results. First, I study choice under risk, whereas they study consumer choice
without uncertainty. Uncertainty plays an important role in this and most other work
on choice bracketing (e.g., Rabin and Weizsäcker 2009; Zhang 2021). To see this, let

𝑢(�⃗�) = 𝑓(𝑥1 + 𝑥 + 2 + …)

where 𝑓 is strictly increasing. If there is no uncertainty, then 𝑢 is observationally equiv-
alent to an additively separable utility function.

Second and more subtly, Echenique et al. (2011) take a finite dataset of observed
choice as a primitive (following e.g., Afriat 1967), and ask whether that dataset can be
rationalized by a tractable preference. In contrast, I take a choice correspondence 𝑐 as a
primitive (following e.g., Samuelson 1938; Arrow 1959).20 However, it is unlikely that
this accounts for my negative results. To see this, consider an investor who cares only
about total earnings. Theorem 1 implies that expected utility maximization is tractable
only for risk-neutral preferences. The set of finite datasets that can be rationalized by
risk-neutral preferences is likely to be relatively small.

20This is in linewith a “potential outcomes” interpretation, where 𝑐(𝑀) represents the decisionmaker’s
choice in the counterfactual where the decisionmaker is presented with menu𝑀.

29



Together, my results and those of Echenique et al. (2011) illustrate that the im-
plications of computational constraints for economic behavior are not as obvious as
they may appear. Newcomers to the literature may find, say, the connection between
tractability and choice bracketing intuitive or even unsurprising. But given Echenique
et al. (2011), it may be surprising that tractability has any implications at all.

Gilboa et al. (2021) also study computationally-constrained consumer choice, but
take a different approach. In their model, the utility derived from consumption is a
property of the menu that the agent faces, in contrast to the revealed preference ap-
proach that Echenique et al. (2011) and I take. In this formulation, the authors show
that the consumer’s problem is NP-hard. The authors argue that, as a result, consumers
may turn to heuristics likemental accounting. My results show that these kinds of argu-
ments for behavioral heuristics can actually be formalized, by imposing computational
tractability as an axiom.

Other researchers have used Turing machines to study the computability of choice
(Richter and Wong 1999a), equilibria (Richter and Wong 1999b), and repeated game
strategies (Anderlini and Sabourian 1995). Computability is a much weaker property
than computational tractability. It essentially asks whether behavior can be generated
by a Turing machine, whereas tractability asks whether behavior can be generated by
a Turing machine with a reasonable runtime.

Beyond Turing machines, researchers have used specialized models that impose
more structure on how the decisionmaker generates her choices. Some of these mod-
els come from computer science, like perceptrons (Rubinstein 1993) or finite automata
(e.g. Rubinstein 1986; Salant 2011; Wilson 2014; Safonov 2023). Other models capture
forms of procedural reasoning (e.g. Mandler et al. 2012; Mandler 2015), costly reason-
ing (e.g. Gabaix et al. 2006; Ergin and Sarver 2010), incomplete reasoning (e.g. Lipman
1999; Jakobsen 2020), or limited attention (e.g. Gabaix 2014).

One could use more specialized models of computation in order to obtain even
stronger results. After all, the Turing machine is a general model of computation, and
computations that are easy for a computer may be challenging for a human. With that
said, most individuals and firms have access to computers andmay use them to support
their decisionmaking. It would be odd if a general theory of choice could not account
for decisionmakers who take advantage of modern computing power.21

21As I stressed in Section 4, I am not assuming that decisionmakers are literally using algorithms to
make decisions. At the same time, it is desirable to have a theory that does not rule out the possibility
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Economics and Computation. The notion that computational constraints bind on
economic phenomena is widely accepted in the interdisciplinary subfield of economics
and computation. Most famously, computational complexity theory has had a big im-
pact onmechanismdesign, where optimalmechanisms are often intractable (e.g. Nisan
and Ronen 2001). However, both economists and computer scientists have applied
this framework to many other topics, like equilibrium (e.g. Gilboa and Zemel 1989;
Daskalakis et al. 2009), learning (Aragones et al. 2005), social learning (Hązła et al.
2021), testing (Fortnow and Vohra 2009), and rationalizing choices (Apesteguia and
Ballester 2010). Most of these papers, like mine, rely on an expansive interpretation of
the Church-Turing thesis that uses the Turing machine to model behavioral or social
processes.

This subfield also inspired the choice trilemma, which takes the perspective of ap-
proximation algorithms in order to critique the expected utility axioms. Feng andHart-
line (2018) take the same perspective to critique the revelation principle in mechanism
design. In prior-independent settings, they show that designers may obtain a better
approximation to their objective if they are willing to use non-revelation mechanisms.
Specifically, they find that the revelation gap is between 1.013 and 𝑒 in the setting they
study, whereas a value of 1 means no gap. Whereas, in Theorem 2, the approximation
gap is unbounded as 𝑛 →∞.

ChoiceBracketingandRelatedPhenomena. There is considerable empirical sup-
port for choice bracketing and other forms of narrow framing, like mental accounting
(Thaler 1985) and myopic loss aversion (Benartzi and Thaler 1995). Read et al. (1999)
coined the term “choice bracketing” as a way to explain behavior observed in prior
experiments (e.g. Tversky and Kahneman 1981). Since then, experiments have high-
lighted potential factors that influence choice bracketing, including choice complexity
(Stracke et al. 2017), cognitive ability (Abeler and Marklein 2016), framing (Brown et
al. 2021), and the desire for self control (Koch and Nafziger 2019).

Choice bracketing and other forms of narrow framing seem to be economically
meaningful. Observational studies have found evidence for narrow framing in taxi ser-
vices (e.g. Camerer et al. 1997; Martin 2017), bike messenger services (Fehr and Goette
2007), eBay bidding (Hossain and Morgan 2006), savings behavior (Choi et al. 2009),
and food stamp expenditures (Hastings and Shapiro 2018). Others have proposed nar-

that decisionmakers are literally using algorithms to make decisions.
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row framing as an explanation for stock market non-participation (Barberis et al. 2006)
and the equity premium puzzle (Benartzi and Thaler 1995).

Moreover, choice bracketing can lead to surprising behavior. For example, Rabin
andWeizsäcker (2009) consider a decisionmaker choosing from a product menu. Their
model specializesmine by assuming that partial lotteries𝑋𝑖, 𝑋𝑗 are independent of each
other and that the decisionmaker cares about total income, i.e. 𝑋1+…+𝑋𝑛. Unless the
decisionmaker’s preferences satisfy constant absolute risk aversion, the authors show
that she will violate first order stochastic dominance in somemenu. Then they provide
experimental evidence that many decisionmakers narrowly bracket their choices to the
point where they choose dominated lotteries.

In light of this empirical evidence, researchers have proposed various theories of
choice bracketing and mental accounting. Zhang (2021) provides an axiomatic foun-
dation for narrow choice bracketing, by relaxing the independence axiom and intro-
ducing an axiom of correlation neglect. Lian (2020) conceptualizes a decisionmaker as
a narrow thinker if she uses different information to make different decisions, and for-
mulates a model of rational inattention where the decisionmaker chooses what infor-
mation to use for each decision. Similarly, Köszegi andMatějka (2020) develop amodel
of rational inattention to understand mental accounting. Finally, Koch and Nafziger
(2016) justify choice bracketing as a commitment device.

7 Conclusion

In this paper, I propose a new theoretical framework for studying computationally-
tractable choice. Specifically, I apply a powerful model of computation, the Turing ma-
chine, to a quite generalmodel of choice under risk. With these ingredients, Imake two
contributions. First, I justify the claim that computational constraints lead to choice
bracketing (Theorems 1). Second, I justify behavior that violates the expected utility
axioms (Theorem 2).

These results show the potential value of computational tractability to economic
theory. First, by recognizing computational constraints as binding on theworld around
us, we can make sharper predictions about economic behavior. The first step to realiz-
ing this potential is to formulate computational constraints correctly, as an axiom that
restricts how choices vary across counterfactual menus. Then we can impose tractabil-
ity on top of other assumptions, like rationality, to obtain useful representations and
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sharper predictions. Second, computational tractability clarifies the meaning of other
assumptions in our models. For example, it seems natural to assume that investors
only care about total income, but not if this implies risk neutrality. More generally, it
seems natural to assume that choices reveal preferences that satisfy the expected utility
axioms, but not if this means that she is making choices that are objectively worse than
they need to be (Theorem 2).

Since Samuelson (1938), economic theory has typically associated rationality with
“exact maximization of revealed preferences”. The choice trilemma suggests that, in-
stead, the decisionmaker should prioritize “approximatemaximization of hedonic pref-
erences”where hedonic preferences reflect the decisionmaker’s intrinsic objective func-
tion (if she has one). In the the presence of computational constraints, revealed pref-
erences cannot match hedonic preferences unless the objective function is additively
separable. For that reason, it is generally not clear why revealed preferences should ex-
ist at all. Presumably, the decisionmaker’s priority is to perform well according to her
hedonic preferences (if they exist), irrespective of whether an outside observer would
be able to make sense of her choices (see e.g. Manski 2011). Theorem 2 sharpens this
argument by showing that, in fact, it is in the decisionmaker’s best interest to make
choices that do not reveal preferences that satisfy the expected utility axioms.

To develop alternative definitions of rationality that are more compatible with com-
putational constraints, it may be useful to learn from the “beyond worst-case analysis”
literature in computer science (see e.g. Roughgarden 2021). It is common in computer
science to evaluate algorithms on their runtime in the worst-case instance. Consider
an algorithm 𝐴 that takes one minute to solve 99% of inputs and one year for 1% of
inputs (assuming a measure over inputs). The worst-case runtime is one year. But a
decisionmaker that does not have a year to deliberate might use another algorithm 𝐴′:
see whether 𝐴 returns an answer within a minute, otherwise choose something sub-
optimal. This is optimal 99% of the time, suboptimal 1% of the time, and takes about
a minute. Perhaps 𝐴′ should be regarded as rational, even though strictly speaking it
cannot be rationalized.

A Dynamic Choice Bracketing

In this section, I allow the decisionmaker to have preferences over both the items she
obtains and the order in which she obtains them. Then I relate rational and tractable
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choice to dynamic choice bracketing – a new generalization of choice bracketing – and
to expected utility maximization with a Hadwiger separable utility function – a new
relaxation of additively separable utility functions.

Assumption 6. Redefine outcomes𝒳 as the vector-outcomes �⃗� from Section 2.2.

A.1 Examples

I begin with two examples that explain why the conclusion of Theorem 1 no longer
holds, given Assumption 6. More precisely, a utility function need not be additively
separable in order for expected utility maximization to be tractable.

Example 1. Suppose the decisonmaker is choice bracketing. She partitions dimensions
𝑖 = 1,… , 𝑛 intomutually exclusive brackets𝐵1,… , 𝐵𝑚. For each bracket𝐵𝑗, shemaximizes
expected utility according to a utility function𝑢𝑗 that is defined over the coordinates 𝑖 ∈ 𝐵𝑗.
Let 𝑘 = max𝑗 |𝐵𝑗| be the size of the largest bracket.

For concreteness, consider a consumer choosing from eight available products: cereal,
napkins, milk, ground beef, chicken, jam, apples, oranges. The consumer has four brack-
ets. The first bracket consists of breakfast foods (cereal, milk, jam). The second bracket is
just napkins. The third bracket consists of raw meat (ground beef, chicken). The fourth
bracket consists of fruits (apples, orange). Her revealed utility function is

𝑢(𝑥) = 𝑢1(𝑥1, 𝑥3, 𝑥6) + 𝑢2(𝑥2) + 𝑢3(𝑥4, 𝑥5) + 𝑢4(𝑥7, 𝑥8)

where 𝑥𝑖 denotes the amount of product 𝑖 she consumes. Each bracket includes natural
complements (e.g. cereal and milk) or substitutes (e.g. apples and oranges). But across
brackets, the consumer ignores any complementarities or substitutabilities.

In Example 1, expected utility maximization is tractable as long as the bracket size
𝑘 does not grow too quickly with the number of products 𝑛 – i.e., if 𝑘 = 𝑂(log𝑛).22

Example 2. Suppose the decisionmaker iswilling to narrowly bracket decisions 𝑖 = 2,… , 𝑛,
but only after conditioning on decision 1.

For concreteness, consider an individual whose first decision is where she wants to live.
Then she must decide how much of several different products to acquire: gasoline, snow

22It is always possible to optimize within each bracket by brute-force search. The runtime of the algo-
rithm will be exponential in 𝑘, where 𝑘 is the size of the largest bracket. When 𝑘 = 𝑂(log𝑛), a runtime
that is exponential in 𝑘 is only polynomial in 𝑛.

34



boots, swimsuits, gardening tools, hammocks, etc. These products lack obvious comple-
mentarities or substitutabilities, so the consumer is willing to evaluate each product with-
out considering the others. However, her preferences over all of these products depend on
where she lives. For example, shemay value gasolinemore in Los Angeles than in Chicago,
but snow boots more in Chicago than Los Angeles. Her revealed utility function is

𝑢(𝑥) = 𝑢2(𝑥1, 𝑥2) + 𝑢3(𝑥1, 𝑥3) + 𝑢4(𝑥1, 𝑥4) + 𝑢5(𝑥1, 𝑥5) + 𝑢6(𝑥1, 𝑥6) + …

This decisionmaker cannot evaluate one product separately from another. For example,
she cannot fully separate gasoline from snow boots. If gasoline were unavailable, then she
probably would not move to Los Angeles, which might make her value snow boots more.

Although 𝑢 is not additively separable in Example 2, expected utility maximization
is tractable. It is straightforward to maximize expected utility in polynomial time using
backwards induction. There are two steps to this algorithm:

1. Conditional on her choice 𝑋1, compute her optimal choices 𝑋∗
2
(𝑋1),… , 𝑋

∗
𝑛(𝑋1):

𝑋∗

𝑖
(𝑋1) ∈ arg max

𝑋𝑖∈𝑀𝑖

E[𝑢𝑖(𝑋1, 𝑋𝑖)]

2. Choose 𝑋1 to maximize expected utility, given her planned choices 𝑋∗
2
,… , 𝑋∗

𝑛:

E
[
𝑢
(
𝑋1, 𝑋

∗
2
(𝑋1),… , 𝑋

∗
𝑛(𝑋1)

)]

This is not choice bracketing, but it is similar. For every 𝑖 ≥ 2, the decisionmaker
brackets together her consumption decision 𝑋𝑖 with her location decision 𝑋1. Then,
when it is time to choose𝑋1, there is no need to reconsider her consumption decisions.
After all, she has already determined her choices 𝑋∗

2
,… , 𝑋∗

𝑛 as a function of 𝑋1.
These examples are both special cases of what I call dynamic choice bracketing.

A.2 Dynamic Choice Bracketing

Dynamic choice bracketing is an algorithm that combines dynamic programming with
choice bracketing. Like choice bracketing, it may selectively ignore links between deci-
sions 𝑖 and 𝑗. Unlike choice bracketing, the relevant bracketsmay change in the process
of making the choice. This happened in Example 2, for instance.
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Algorithm 1 defines dynamic choice bracketing. The input is a menu 𝑀. The al-
gorithm visit coordinates 1,… , 𝑛 in a prespecified order. When visiting coordinate 𝑖,
the goal is to construct a function 𝑋∗

𝑖
(⋅) that maps choices 𝑋𝑗 to a choice 𝑋𝑖. As more

coordinates are visited, the algorithms redefines 𝑋∗

𝑖
(⋅) so that it remains a function of

unvisited coordinates. After the algorithm visits all coordinates, the functions 𝑋∗

𝑖
(⋅)

have no remaining arguments. The output is a choice
(
𝑋∗
1
,… , 𝑋∗

𝑛

)
∈ 𝑀.

Brackets 𝐵𝑖 are now dynamic. Following Algorithm 1, let coordinate 𝑖 belong to
bracket 𝐵𝑖 = {𝑖}∪𝑆𝑖∪ 𝐼𝑖, which also includes 𝑖’s successors and indirect influencers. Let
the bracket size be the size of the largest bracket, i.e.,max𝑖 |𝐵𝑖|.

A.3 Hadwiger Separability

Previously, I related narrow choice bracketing to additive separability, and used The-
orem 1 to motivate additive separability. Now, I relate dynamic choice bracketing to
Hadwiger separability, and use Theorem 3 to motivate Hadwiger separability.

Hadwiger separability is a relaxation of additive separability. It captures a sense in
which most pairs (𝑥𝑖, 𝑥𝑗) are evaluated separately from each other, but not necessarily
all. Compared to additive separability, Hadwiger separability is capable of modeling a
richer set of preferences, such as preferences involving a limited number of comple-
mentarities and substitutions between goods. Still, it is quite restrictive.

Hadwiger separability builds on a pairwise notion of separability.

Definition 10. A utility function 𝑢 is (𝑖, 𝑗, 𝑛, 𝛿)-separable if there exist functions 𝑢𝑖, 𝑢𝑗, 𝜉
such that, for all 𝑛-dimensional outcomes 𝑥,

𝑢𝑛(𝑥) = 𝑢𝑖(𝑥𝑖, 𝑥−𝑖𝑗) + 𝑢𝑗(𝑥𝑗, 𝑥−𝑖𝑗) + 𝜉(𝑥) and |𝜉(𝑥)| ≤ 𝛿

where 𝑢𝑛 is the normalized utility function from Section 4.2.

The inseparability graph identifies which pairs (𝑖, 𝑗) are not separable.

Definition 11. The inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿) of utility function 𝑢 is an undirected
graph with 𝑛 nodes. There is an edge (𝑖, 𝑗) if and only if 𝑢 is not (𝑖, 𝑗, 𝑛, 𝛿)-separable.

Figure 4 depicts the inseparability graphs associated with Example 1 and 2. As we
will see, these are also examples of sparse graphs.

36



Input: product menu𝑀.

Process: visit coordinates 𝑖 ∈ {1,… , 𝑛} in a prespecified order. At each 𝑖:

1. Specify the successors 𝑆𝑖 of 𝑖.
This is some subset of the unvisited coordinates 𝑗.

2. Identify the predecessors 𝑃𝑖 of 𝑖.
I.e., the set of visited coordinates 𝑗 where the choice 𝑋∗

𝑗
(⋅) depends on 𝑋𝑖.

3. Specify value function 𝑉𝑖.
Depends on coordinate 𝑖, successors 𝑆𝑖, and predecessors 𝑃𝑖, i.e.

𝑉𝑖

(
𝑋𝑖, 𝑋𝑆𝑖

, 𝑋𝑃𝑖

)
∈ ℝ

4. Identify the indirect influencers 𝐼𝑖 of 𝑖.
I.e., all unvisited coordinates 𝑗 where there is a predecessor 𝑘 ∈ 𝑃𝑖
such that the choice 𝑋∗

𝑘
(⋅) depends on 𝑋𝑗 .

5. Define choice 𝑋∗

𝑖
(⋅) as function of successors and indirect influencers.

This is done by optimizing the value function as follows:

𝑋∗

𝑖

(
𝑋𝑆𝑖

, 𝑋𝐼𝑖

)
∈ argmax

𝑋𝑖∈𝑀𝑖

𝑉𝑖

(
𝑋𝑖, 𝑋𝑆𝑖

, 𝑋∗
𝑃𝑖

(
𝑋𝑖, 𝑋𝐼𝑖

))

6. Redefine the choices 𝑋∗

𝑗
for predecessors 𝑗 ∈ 𝑃𝑖.

Specifically, replace partial lottery 𝑋𝑖 with choice 𝑋∗

𝑖
(⋅), i.e.

𝑋∗

𝑗

(
𝑋𝑆𝑖

, 𝑋𝐼𝑖

)
∶= 𝑋∗

𝑗

(
𝑋∗

𝑖

(
𝑋𝑆𝑖

, 𝑋𝐼𝑖

)
, 𝑋𝐼𝑖

)
∀𝑗 ∈ 𝑃𝑖

Output:
(
𝑋∗
1
,… , 𝑋∗

𝑛

)
∈ 𝒳. This is well-defined because, once all coordinates

have been visited, choices 𝑋∗

𝑖
(⋅) have no remaining arguments.

Algorithm 1: The prototypical dynamic choice bracketing algorithm.
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Example 1, with 𝑛 = 8.

1 2

3

4

56

7

8

Example 2, with 𝑛 = 6.

1

2 3 4 5 6

Figure 4: Inseparability graphs 𝐺𝑛(𝑢 ∣ 0) for the utility functions in Examples 1-2.

The utility function 𝑢 is Hadwiger separable if its inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿)

quickly becomes sparse as 𝑛 grows large, with precision 𝛿 that quickly converges to
zero. To formalize this, I need a measure of graph sparsity. It turns out that the right
measure was formulated byHadwiger (1943) to state his longstanding conjecture about
the chromatic number of graphs. It refers to a concept called graph minors.

Definition 12. Let 𝐺′ be a subgraph of the undirected graph 𝐺. Then 𝐺′ is aminor if it
can be formed from 𝐺 by some sequence of the following two operations:

1. Delete a node 𝑖 and all of its incident edges (𝑖, 𝑗).

2. Contract an edge (𝑖, 𝑗). This deletes nodes 𝑖, 𝑗 and replaces them with a new node
𝑘. It also replaces any edges (𝑖, 𝑙) and (𝑗, 𝑙) with a new edge (𝑘, 𝑙).

Definition 13. Let𝐺 be an undirected graph. TheHadwiger numberHad(𝐺) of𝐺 is the
number of nodes in its largest complete minor.23

Figure 5 illustrates these definitions, through an example.

Definition 14. The function 𝑢 isHadwiger separable if, for any given sequence 𝛿𝑛,

1

𝛿𝑛
= 𝑂 (poly(𝑛)) ⟹ Had(𝐺𝑛(𝑢 ∣ 𝛿𝑛)) = 𝑜(poly(𝑛))

The inseparability graph “quickly becomes sparse” since theHadwiger number grows
at a subpolynomial rate (e.g., slower than 𝑛0.1, 𝑛0.01, etc.). For example, it might grow
at a logarithmic rate, which for practical purposes is not too far from constant.

23A complete graph (or minor) is one in which all nodes share an edge.
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1. Let 𝐺 be the following graph.

1 2

45

36

2. Delete node 4.

1 2

45

36

3. Contract edge between nodes 1 and 2.

1 2

5

36

4. Obtain the minor 𝐺′ of 𝐺.

1

5

36

Figure 5: In this example, I find the Hadwiger number of the graph 𝐺. The minor 𝐺′ is
complete and has four nodes. In fact, this is the largest completeminor, soHad(𝐺) = 4.

Hadwiger separability is an asymptotic property, like computational tractability.
However, it is often easy to verify whether a utility function is Hadwiger separable or
not.24 Take Example 1 and 2, whose inseparability graphs are depicted in Figure 4.
The Hadwiger number in Example 1 is the size 𝑘 of the largest bracket, and the utility
function is Hadwiger separable if and only if the bracket size is 𝑘 = 𝑜(poly(𝑛)). The
Hadwiger number in Example 2 is 1, so the utility function is Hadwiger separable.

I also define a stronger notion of Hadwiger separability that requires perfect preci-
sion (𝛿 = 0) and an even sparser inseparability graph.

Definition 15. The function 𝑢 is strongly Hadwiger separable if

Had(𝐺𝑛(𝑢 ∣ 0)) = 𝑂(1)

Finally, I relate Hadwiger separability with dynamic choice bracketing.

24In general, computing the Hadwiger number is NP-hard (Eppstein 2009). However, for any insep-
arability graph 𝐺𝑛(𝑢) and constant 𝐶, it is possible to determine whether Had(𝐺𝑛(𝑢)) ≤ 𝐶 log𝑛 within
𝑂(poly(𝑛, 𝐶)) time. This follows from a fixed parameter tractability result of Alon et al. (2007).
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Proposition 3. Let 𝑐 be a rational choice correspondence. If 𝑐 reveals a strongly Had-
wiger separable utility function, then it can be generated by dynamic choice bracketing
with bracket size 𝑂(1).

A.4 Weak Tractability

In Theorems 3 and 4, I refer to a weaker variant of tractability. This comes from non-
uniform complexity and is related to circuit complexity (Arora and Barak 2009, ch.6).

A Turingmachineweakly satisfies a time constraint𝑇 if it requires additional input,
called advice, to meet that constraint. An advice string 𝐴𝑗 is associated with menus𝑀
of description length 𝓁(𝑀) = 𝑗. This could reflect the output of any pre-processing
the decisionmaker does after learning the description length 𝓁(𝑀) but before learning
the menu𝑀. The Turing machine receives a menu-advice pair

(
𝑀,𝐴𝓁(𝑀)

)
as its initial

input, and satisfies time constraint 𝑇 if

runtimeTM
(
𝑀,𝐴𝓁(𝑀)

)
≤ 𝑇(𝓁(𝑀)) ∀𝑀 ∈ℳ (3)

Definition 16. A choice correspondence 𝑐 isweakly tractable if there is a Turingmachine
TM, a time constraint 𝑇(𝑙) = 𝑂(poly(𝑙)), and advice 𝐴𝑙 where

1. TM generates the choice correspondence 𝑐, as in condition (1).

2. TM satisfies the time constraint 𝑇 given advice 𝐴𝑙, as in condition (3).

3. The advice is of polynomial length, i.e., |𝐴𝑙| = 𝑂(poly(𝑙)).

A.5 Representation Theorem

Theorem 3 shows that rational and weakly tractable choice implies expected utility
maximization with a Hadwiger separable utility function, under a suitable computa-
tional hardness conjecture. Theorem 4 gives a partial converse.

These results refer to weak tractability, whereasmy earlier results simply referred to
tractability. This has three implications. First, itmakes the hardness result (Theorem3)
stronger and the partial converse (Theorem4)weaker. Second, Imust rely on a stronger
computational hardness conjecture, calledNP ⊄ P∕poly.25 Third, I use a relaxednotion
of efficient computability.

25This claims 3-SAT is not weakly tractable, whereas P ≠ NP only claims that 3-SAT is not tractable.
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Definition 17. A utility function 𝑢 is efficiently computable with advice if it satisfies
Definition 6 with a Turing machine that has access to 𝑂(poly(𝑛, 1∕𝜖))-size advice.

Theorem 3. Let choice correspondence 𝑐 be rational and weakly tractable. If NP ⊄

P∕poly, then 𝑐 reveals a Hadwiger separable utility function 𝑢. Moreover, 𝑢 is efficiently
computable with advice.

I argue that Theorem 3 is nearly tight by providing a partial converse. This converse
is partial in three senses: it restricts attention to product menus, it assumes strongHad-
wiger separability, and it refers to 𝜖-expected utility maximization.

Theorem4. Let the utility function𝑢 be stronglyHadwiger separable and efficiently com-
putable with advice. Then 𝜖-expected utility maximization is weakly tractable on the col-
lection of product menus.

B Proof Outlines

I outline the proofs of Theorems 1 and 2. I leave proof outlines of Theorems 3 and 4 to
the Supplemental Appendix, along with the full proofs of all results.

B.1 Preliminaries

I begin by formalizing the computational hardness conjecture P ≠ NP, which relates to
an important class of computational problems in mathematical logic. These problems
also play an important role in the proof of Theorem 1.

The satisfiability problem (SAT) asks whether a logical expression is possibly true,
or necessarily false. To define it, I need to introduce a few objects. A Boolean variable
v ∈ {true, false} can be either true or false. A literal is an assertion that v is true (v)
or false (¬v). A clause CL is a sequence of literals combined by “or” statements. For
example,

CL = (v1 ∨ ¬v2 ∨ v3)

A boolean formula BF in conjunctive normal form (CNF) is a sequence of (unique)
clauses combined by “and” statements. For example,

BF = CL1 ∧ CL2
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BF is satisfiable if there exists an assignment of values to v1,… , v𝑛 such that BF = true.

Definition 18. Computational problem SAT asks whether a given formula is satisfiable.

There are many variants of SAT. An especially important one is 3-SAT, which re-
stricts attention to formulas where each clause has exactly three literals.

Definition 19. Computational problem 3-SAT asks whether a given formula

BF = CL1 ∧ … ∧ CL𝑚

is satisfiable, where each clause CL𝑗 has exactly three literals.

The P ≠ NP conjecture has many equivalent formulations. Here is one.

Conjecture 1 (P ≠ NP). No Turing machine can solve 3-SAT in polynomial time.

Beginning with Karp (1972), computer scientists have shown that P ≠ NP is equiv-
alent to the non-existence of a polynomial-time algorithm for hundreds of other noto-
riously hard problems. That is, if there exists a polynomial-time algorithm for any of
these problems, then P = NP. The fact that efficient algorithms have not been found
for any of these problems, despite their scientific and industrial importance, has led to
a widespread belief that P ≠ NP.

In particular, this clarifies why it would be shocking if humans could behave as if
they aremaximizing the expected value of a utility function𝑢 that I consider intractable.
To illustrate, consider Theorem 1. To prove that result, I show that if we could find a
utility function𝑢 that is not additively separable and a decisionmakerwhose choices are
rationalized by 𝑢, then we could convert that decisionmaker’s choices into efficient so-
lutions to notoriously hard problems like 3-SAT. That would be miraculous, but seems
unlikely.

B.2 Proof Outline of Theorem 1

I now outline the proof of Theorem 1. I refer to a variant of the satisfiability problem
that cannot be solved in polynomial-time unless P = NP (Garey et al. 1976).

Definition 20. The computational problem Max (Min) 2-SAT takes a boolean formula

BF = CL1 ∧ … ∧ CL𝑚
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with variables v1,… , v𝑛, where each clause CL𝑗 has exactly two literals, representing dis-
tinct variables. It outputs the maximum (minimum) number of clauses that can be simul-
taneously satisfied, i.e.

max
v1,…,v𝑛

𝑚∑

𝑗=1

1(CL𝑗 = true)

The high-level structure of the proof is an algorithmic reduction. For any fixed utility
function 𝑢 that is not additively separable, I show that Max 2-SAT can be reduced to
maximizing expected utility.

Algorithmic reductions are ubiquitous in computational complexity theory. What
distinguishes this result is that it is not enough to establish just one reduction. I must
show that, for every utility function 𝑢 that is not additively separable, there exists a re-
duction that is particular to 𝑢. That is, I must prove a dichotomy theorem (e.g., Schaefer
1978) that characterizes the complexity of a large class of problems.

First, I establish a useful fact about additively separable utility functions.

Lemma 1. Let 𝑢 be a utility function. Then 𝑢 is additively separable if and only if there
do not exist items 𝑎, 𝑏 ∈ 𝑆 and an outcome �⃗� ∈ �⃗� such that

𝑢(𝑎, 𝑎, 𝑥3, 𝑥4,…) + 𝑢(𝑏, 𝑏, 𝑥3, 𝑥4,…) ≠ 𝑢(𝑎, 𝑏, 𝑥3, 𝑥4,…) + 𝑢(𝑏, 𝑎, 𝑥3, 𝑥4,…)

Next, I establish the polynomial-time reductions.

Lemma 2. Suppose a tractable choice correspondence 𝑐maximizes expected utility, where
there exist items 𝑎, 𝑏 ∈ 𝑆 and an outcome �⃗� ∈ �⃗� such that

𝑢(𝑎, 𝑎, 𝑥3, 𝑥4,…) + 𝑢(𝑏, 𝑏, 𝑥3, 𝑥4,…) ≠ 𝑢(𝑎, 𝑏, 𝑥3, 𝑥4,…) + 𝑢(𝑏, 𝑎, 𝑥3, 𝑥4,…)

Then there exists a polynomial-time algorithm for Max 2-SAT.

Figure 6 illustrates the high-level structure of the proof of Lemma 2. The goal is to
construct a reduction algorithm that solves (say) Max 2-SAT by calling on another al-
gorithm that maximizes expected utility. It consists of amenu function �⃗�𝑢 that maps a
given formula BF into a product menus �⃗�, and an output function𝑂𝑢 that maps a cho-
sen lottery �⃗� ∈ 𝑐(�⃗�) into an assignment of true/false values to the variables v1,… , v𝑛.
Both �⃗�𝑢 and 𝑂𝑢 can be computed in polynomial time, and have the property that

𝑂𝑢(𝑐(�⃗�𝑢(BF))) (4)
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Menu
�⃗�

Set of lotteries �⃗�

Formula
BF

Two literals per clause

Choice
�⃗�

Maximizes E
[
𝑢(�⃗�)

]

Assignment
v1,… , v𝑛

Solves Max 2-SAT

�⃗�𝑢
𝑐 𝑂𝑢

(poly-time) (poly-time)

Figure 6: The high-level structure of the reduction algorithm used in Lemma 2.

maximizes the number of true clauses in the formula BF. It follows that if the choice
correspondence 𝑐 can be computed in polynomial time, then the solution (4) to Max
2-SAT can be computed in polynomial time. This would contradict P ≠ NP. Therefore,
I conclude that 𝑐 cannot be computed in polynomial time.

Finally, I verify that the utility function is efficiently computable.

Lemma 3. A choice correspondence that is rational and tractable reveals an efficiently
computable utility function.

The proof of Lemma 3 transforms the choice-generating algorithm into a utility-
computing algorithm. I associate a utility level 𝑦 ∈ [0, 1] with lottery �⃗�𝑦 that outputs
the least desirable outcome with probability 𝑦 and the most desirable outcome with
probability 1 − 𝑦. Then I assign outcome �⃗� a utility 𝑢(�⃗�) = 𝑦 if the agent chooses �⃗�
when offered

{
�⃗�, �⃗�𝑦−𝜖

}
, but chooses �⃗�𝑦+𝜖 when offered

{
�⃗�, �⃗�𝑦+𝜖

}
.

B.3 Proof of Special Case of Theorem 1

For intuition, I prove Theorem 1 in a special case. Let utility function 𝑢 satisfy

𝑢(�⃗�) = 𝑓 (

𝑛∑

𝑖=1

𝑥𝑖)

for some strictly concave and strictly increasing function 𝑓. I interpret the sum
∑𝑛

𝑖=1
𝑥𝑖

as income and the function 𝑓 as capturing risk aversion.
I show that the choice correspondence 𝑐𝑢 that reveals the utility function 𝑢 is in-

tractable, assuming P ≠ NP. This is a proof by contradiction. I will argue that if the
choice correspondence 𝑐𝑢 is tractable then I can use it to construct a polynomial-time
algorithm that solves Max 2-SAT. This contradicts P ≠ NP.
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B.3.1 Preliminaries

Let BF be a boolean formula with 𝑛 variables v1,… , v𝑛 and𝑚 clausesCL1,… ,CL𝑚. Each
clause has at most two literals, which I can write as

CL𝑗 = v𝑗1 ∨ v𝑗2

The auxilliary variables v𝑗𝑘 are meant to represent literals v𝑖 or ¬v𝑖 for the original 𝑛
variables. Recall that, given this formula, Max 2-SAT solves

max
v𝑖∈{true, false}

𝑚∑

𝑗=1

1(CL𝑗) = max
v𝑖∈{true, false}

𝑚∑

𝑗=1

1
(
v𝑗1 ∨ v𝑗2

)
(5)

where the indicator functions sets 1(true) = 1 and 1(false) = 0. The goal will be to
relate this optimization problem to expected utility maximization, i.e.,

max
𝑋𝑖∈{𝑋

𝑇
𝑖
,𝑋𝐹

𝑖
}

E[𝑓 (

𝑛∑

𝑖=1

𝑥𝑖)] (6)

B.3.2 Mapping Formulas to Menus and Lotteries to Assignments

Given the utility function 𝑢, I construct a menu function �⃗�𝑢(⋅) and an output function
𝑂𝑢(⋅) that satisfy the following properties.

1. The menu function �⃗�𝑢 maps a boolean formula BF to a menu �⃗�. It must be
polynomial-time computable.

2. The output function𝑂𝑢maps a lottery �⃗� to an assignment of true and false values
to the variables v1,… , v𝑛. It must be polynomial-time computable.

3. The assignment 𝑂𝑢

(
𝑐𝑢

(
�⃗�𝑢 (BF)

))
must solve Max 2-SAT for formula BF.

Note that since �⃗�𝑢 and𝑂𝑢 can be computed in polynomial time, the assignment𝑂𝑢

(
𝑐𝑢

(
�⃗�𝑢 (BF)

))

that solvesMax 2-SAT can also be computed in polynomial time if the choice correspon-
dence 𝑐𝑢 can be computed in polynomial time.

Formally, the menu �⃗� = �⃗�𝑢(BF) is product menu that consists of partial menus

𝑀𝑖 =
{
𝑋true
𝑖

, 𝑋false
𝑖

}
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while the output map satisfies assignment 𝑂𝑢(�⃗�) sets

𝑣𝑖 =

⎧

⎨

⎩

true if 𝑋𝑖 = 𝑋true
𝑖

false if 𝑋𝑖 = 𝑋false
𝑖

To finish the construction, I need to define the partial lotteries 𝑋true
𝑖

and 𝑋false
𝑖

.

B.3.3 Defining Partial Lotteries for a Simple Formula

To understand how I define the partial lotteries 𝑋true
𝑖

and 𝑋false
𝑖

, consider a special case.
Suppose that the formula has only 𝑛 = 2 variables and𝑚 = 1 clauses, where

BF = 𝑣1 ∨ 𝑣2

In that case, there are four possible assignments:

(v1, v2) ∈ {(true, true), (true, false), (false, true), (false, false)}

Similarly, there are four possible lotteries in the menu𝑀:

�⃗� =
{(
𝑋true
𝑖

, 𝑋true
𝑖

)
,
(
𝑋true
𝑖

, 𝑋false
𝑖

)
,
(
𝑋false
𝑖

, 𝑋true
𝑖

)
,
(
𝑋false
𝑖

, 𝑋false
𝑖

)}

I want the expected utility of a lottery �⃗� ∈ �⃗� to be proportional to the number of
true clauses in the assignment 𝑂𝑢(�⃗�). This would ensure that the lottery �⃗� that max-
imizes expected utility generates an assignment 𝑂𝑢(�⃗�) that maximizes the number of
true clauses. Formally, I seek constants 𝛽0 ∈ ℝ and 𝛽1 > 0 such that

E[𝑓 (𝑋1 + 𝑋2)] = 𝛽0 + 𝛽1 ⋅ 1
(
v𝑗1 ∨ v𝑗2 given 𝑂𝑢(�⃗�)

)

More precisely, these constants would satisfy the following system of equations:

E
[
𝑓
(
𝑋true
1

+ 𝑋true
2

)]
= 𝛽0 + 𝛽1 (7)

E
[
𝑓
(
𝑋true
1

+ 𝑋false
2

)]
= 𝛽0 + 𝛽1

E
[
𝑓
(
𝑋false
1

+ 𝑋true
2

)]
= 𝛽0 + 𝛽1

E
[
𝑓
(
𝑋false
1

+ 𝑋false
2

)]
= 𝛽0
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To ensure this, fix a parameter 𝑝 ∈ (0.5, 1) and define the partial lotteries as follows:

𝑋true
𝑖

(𝜔) ∶=

⎧

⎨

⎩

$1 𝜔 ≤ 𝑝

$0 otherwise
𝑋false
𝑖

(𝜔) ∶=

⎧

⎨

⎩

$1 𝜔 > 𝑝

$0 otherwise

That is, 𝑋true
𝑖

generates a payoff with probability 𝑝, 𝑋false
𝑖

generates a payoff with prob-
ability 1 − 𝑝, and the two partial lotteries are negatively correlated. I claim that for
every strictly concave and strictly increasing function 𝑓 there exists a value 𝑝 such that
equations (7) hold. The argument is illustrated in Figure 7, and has four parts.

1. The lottery
(
𝑋true
1

, 𝑋false
2

)
is a risk-free asset that generates income

𝑋true
1

+ 𝑋false
2

= 1

because each partial lottery generates a payoff of one if and only if the other gen-
erates a payoff of zero. Therefore, its expected utility is 𝑓(1), as the first graph in
Figure 7 illustrates. The same is true for the lottery

(
𝑋false
1

, 𝑋true
2

)
.

2. The lottery
(
𝑋true
1

, 𝑋true
2

)
is a risky asset that generates income

𝑋true
1

+ 𝑋true
2

=

⎧

⎨

⎩

$2 𝜔 ≤ 𝑝

$0 otherwise

Its expected utility is 𝑝𝑓(2) + (1 − 𝑝)𝑓(0). Since 𝑓 is strictly increasing, the ex-
pected utility is strictly higher than 𝑓(1) when 𝑝 = 1 and strictly lower when
𝑝 = 0.5, as the second and third graphs in Figure 7 illustrate.

3. The expected utility of the risky asset is equal to the expected utility of the risk-
free asset when

𝑝 =
𝑓(1) − 𝑓(0)

𝑓(2) − 𝑓(0)
(8)

The numerator is at least half of the denominator (since 𝑓 is strictly increasing
and strictly concave), so 𝑝 ∈ (0.5, 1). The fourth graph in Figure 7 illustrates.
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1. Expected utility of
(
𝑋true
1

, 𝑋false
2

)
. 2. Exp. utility of

(
𝑋true
1

, 𝑋true
2

)
for 𝑝 = 0.5.

3. Exp. utility of
(
𝑋true
1

, 𝑋true
2

)
for 𝑝 = 1. 4. Exp. utility of

(
𝑋true
1

, 𝑋true
2

)
for 𝑝 ≈ 0.7.

Figure 7: An illustration of the argument that there exists a value𝑝 such that the system
of equations (7) holds. I assume 𝑓(𝑧) =

√
𝑧.
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4. The lottery
(
𝑋false
1

, 𝑋false
2

)
is another risky asset and generates income

(
𝑋false
1

, 𝑋false
2

)
=

⎧

⎨

⎩

$0 𝜔 ≤ 𝑝

$2 otherwise

Since𝑝 > 0.5, it is first-order stochastically dominated by the lottery
(
𝑋true
1

, 𝑋true
2

)
.

If 𝑝 satisfies equation (8), the expected utility of
(
𝑋false
1

, 𝑋false
2

)
is

(
𝑓(1) − 𝑓(0)

𝑓(2) − 𝑓(0)
)𝑓(0) + (1 −

𝑓(1) − 𝑓(0)

𝑓(2) − 𝑓(0)
)𝑓(2) = 𝑓(0) − 𝑓(1) + 𝑓(2) < 𝑓(1)

where the inequality follows from the fact that 𝑓 is strictly concave.

To summarize, this construction satisfies the system of equations (7) where

𝛽0 = 𝑓(0) − 𝑓(1) + 𝑓(2) 𝛽1 = 𝑓(1) − 𝛽0 (9)

This ensures that the expected utility of a lottery �⃗� is proportional to the number of
true clauses in the assignment 𝑂𝑢(�⃗�).

B.3.4 Defining Partial Lotteries for General Formulas

I can extend the construction in Step 3 to formulas other than BF = 𝑣1 ∨ 𝑣2.
First, divide the sample space Ω into 𝑚 equally-sized intervals. Each interval cor-

responds to one clause in BF, as Figure 8 illustrates.

Clause 1 Clause𝑚Clause 2

...

Clause 3

0 1∕𝑚 2∕𝑚 3∕𝑚
𝑚 − 1

𝑚
1

Figure 8: This diagram depicts the sample spaceΩ = [0, 1], broken up into𝑚 intervals
of equal size. Interval 𝑗 is associated with clause 𝑗.

Second, I turn to the partial lotteries. For a given sample 𝜔, suppose that it falls into
the interval 𝑗 associated with clause CL𝑗. Let v𝑖 ∈ CL𝑗 indicate that either v𝑗1 = v𝑖 or
v𝑗2 = v𝑖, and let ¬v𝑖 ∈ CL𝑗 indicate that either v𝑗1 = ¬v𝑖 or v𝑗2 = ¬v𝑖. Define the partial
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lotteries as follows:

𝑋true
𝑖

(𝜔) ∶=

⎧
⎪

⎨
⎪

⎩

$1 𝑣𝑖 ∈ CL𝑗 and 𝑗

𝑚
≤ 𝜔 <

𝑗+𝑝

𝑚

$1 ¬𝑣𝑖 ∈ CL𝑗 and 𝑗+𝑝

𝑚
≤ 𝜔 <

𝑗+1

𝑚

$0 otherwise

𝑋false
𝑖

(𝜔) ∶=

⎧
⎪

⎨
⎪

⎩

$1 ¬𝑣𝑖 ∈ CL𝑗 and 𝑗

𝑚
≤ 𝜔 <

𝑗+𝑝

𝑚

$1 𝑣𝑖 ∈ CL𝑗 and 𝑗+𝑝

𝑚
≤ 𝜔 <

𝑗+1

𝑚

$0 otherwise

Third, I compare the expected utility of a lottery �⃗� with the number of true clauses
in the assignment 𝑂𝑢(�⃗�). By the law of iterated expectations,

E
[
𝑢(�⃗�)

]
=

𝑚∑

𝑗=1

Pr[𝜔 ∈ [
𝑗

𝑚
,
𝑗 + 1

𝑚
]] ⋅ E[𝑢(�⃗�) ∣ 𝜔 ∈ [

𝑗

𝑚
,
𝑗 + 1

𝑚
]]

By definition of the probability space,

Pr[𝜔 ∈ [
𝑗

𝑚
,
𝑗 + 1

𝑚
]] =

1

𝑚

If 𝑝 satisfies equation (8) and 𝛽0, 𝛽1 satisfy equations (9), then

E[𝑢(�⃗�) ∣ 𝜔 ∈ [
𝑗

𝑚
,
𝑗 + 1

𝑚
]] = 𝛽0 + 𝛽11

(
v𝑗1 ∨ v𝑗2 given 𝑂𝑢(�⃗�)

)

This follows from the same argument as in Step 2. Combining everything yields

E
[
𝑢(�⃗�)

]
=
𝛽0

𝑚
+
𝛽1

𝑚

𝑚∑

𝑗=1

1
(
v𝑗1 ∨ v𝑗2 given 𝑂𝑢(�⃗�)

)

Since the output function 𝑂𝑢 is surjective, every assignment corresponds to some lot-
tery �⃗�. Therefore, the lottery �⃗� that maximizes expected utility corresponds to the
assignment 𝑂𝑢(�⃗�) that maximizes the number of true clauses in BF.

This is the essential step in the proof by contradiction. The remaining steps are
to verify that the menu𝑀 = �⃗�𝑢(BF) and the assignment 𝑂𝑢(�⃗�) can be constructed in
polynomial time. Then, if the choice correspondence 𝑐were tractable, therewould exist
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an algorithm that solves Max 2-SAT by computing 𝑂𝑢

(
𝑐𝑢

(
�⃗�𝑢 (BF)

))
in polynomial

time. Since Max 2-SAT is NP-hard, this would contradict P ≠ NP.

B.4 Proof Outline of Theorem 2

I outline the proof of Theorem 2. First, I show that rational and tractable choice cor-
respondences may not even be approximately optimal. This is not always true; for ex-
ample, if the objective function �̄� is additively separable, then expected objective max-
imization is weakly tractable. But it is true if �̄� satisfies a sublinearity property.

Definition 21. The objective function �̄� is 𝜖-sublinear for some constant 𝜖 > 0 if

�̄�(1,… , 1
⏟⏟⏟
𝑛 times

, 0,…) = 𝑂
(
𝑛1−𝜖

)

Lemma 4. Let the objective function �̄� be 𝜖-sublinear and strictly increasing.26 Let the
choice correspondence 𝑐 be rational and tractable. If P ≠ NP, then APX�̄�

𝑛(𝑐) = �̃�(𝑛−𝜖).

That is, no rational and tractable choice correspondence – which corresponds to
narrow choice bracketing, by Theorem 1 – guarantees a constant approximation. As
𝑛 grows, the approximation ratio converges to zero. The rate of convergence is deter-
mined by 𝜖. Intuitively, for any given 𝑛, narrow choice bracketing will perform worse
as the objective function �̄� becomes more sublinear.

Next, I turn to the second part of Theorem 2. I present a greedy algorithm (2) that
generalizes Johnson’s (1974) approximation algorithm for Max 2-SAT.

The greedy algorithm has a lexicographic flavor. In the first iteration, the decision-
maker chooses the partial lottery 𝑋1. Rather than anticipate her remaining choices,
she incorrectly assumes that eventual outcome �⃗� will be zero-valued in all other di-
mensions, i.e. 𝑥𝑖 = 0 for 𝑖 ≥ 2. She then maximizes expected objective under that
assumption. In the 𝑖th iteration, the decisionmaker chooses the partial lottery 𝑋𝑖. Now,
she takes into account her choices 𝑋∗

1
,… , 𝑋∗

𝑖−1
, but she incorrectly assumes that her

eventual outcome �⃗� will be zero-valued in all dimensions 𝑗 > 𝑖.
Despite appearingnaive, the greedy algorithmguarantees a 1∕2-approximationwhen

the objective function �̄� satisfies a diminishing returns property. Roughly, an decision-
26By strictly increasing, I mean that �̄�(�⃗�) > �̄�(�⃗�′) whenever 𝑥𝑖 > 𝑥′

𝑖
for some 𝑖.
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Parameters: objective function �̄� that is efficiently computable.

Input: product menu �⃗�.

Process: iterate over 𝑖 = 1,… , 𝑛. For each 𝑖, define

𝑋∗

𝑖
∈ argmax

𝑋𝑖∈𝑀𝑖

E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋𝑖, 0, 0,…

)]

Output:
(
𝑋∗
1
,… , 𝑋∗

𝑛

)
∈ �⃗�

Algorithm 2: A greedy approximation algorithm.

maker that prefers outcome �⃗� to �⃗�′ should not prefer �⃗� + �⃗�′′ to �⃗�′ + �⃗�′′ even more after
she is given a lump sum of �⃗�′′.

Definition 22. The objective function �̄� features diminishing returns if

�̄�(�⃗�) − �̄�(𝑥′) ≥ �̄�(�⃗� + �⃗�′′) − �̄�(�⃗�′ + �⃗�′′) ∀�⃗�, �⃗�′, �⃗�′′ ∈ 𝒳

Johnson (1974) showed that a similar greedy algorithmguarantees a 1∕2-approximation
for Max 2-SAT. His proof applies almost immediately to this setting when �̄� is the max-
imum objective function �̄�(�⃗�) = max𝑖 𝑥𝑖. It generalizes when the objective function
satisfies two properties: �̄� is non-decreasing and has diminishing returns.

Lemma 5. Let objective function �̄� be non-decreasing with diminishing returns, and ef-
ficiently computable. Then the greedy algorithm (2) guarantees a 1∕2-approximation.

Theorem 2 follows immediately from Lemmas 4 and 5. Furthermore, these results
identify a large class of objective functions �̄� in which Theorem 1 holds. These are
objective functions �̄� that are strictly increasing, 𝜖-sublinear, and feature diminishing
returns. For example, consider an objective functions of the form

�̄�(�⃗�) = 𝑓 (

𝑛∑

𝑖=1

𝑥𝑖)

where 𝑓 is strictly increasing. These feature diminishing returns when 𝑓 is concave
They are 𝜖-sublinearity as long as 𝑓(𝑧) = 𝑂(𝑧1−𝜖) (slightly stronger than concavity).
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C Supplemental Appendix

C.1 Proof Outline of Theorem 3

At a high level, the proof of Theorem 3 is similar to the proof of Theorem 1. It begins
with a characterization of (𝑖, 𝑗, 𝑛, 𝛿)-separable utility functions.

Definition 23. An 𝑛-dimensional outcome 𝑥 and quadruple 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ [0, 1] con-
stitute a violation of (𝑖, 𝑗, 𝑛, 𝛿)-separability if the distance between the expressions

𝑢𝑛
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)
+𝑢𝑛

(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)
(10)

𝑢𝑛
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)
+𝑢𝑛

(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)
(11)

is at least 𝛿. If 𝛿 = 0, this distance must be positive.

Lemma6. Autility function𝑢 is (𝑖, 𝑗, 𝑛, 𝛿)-separable if there exists no violation of (𝑖, 𝑗, 𝑛, 𝛿)-
separability and only if there exists no violation of (𝑖, 𝑗, 𝑛, 4𝛿)-separability.

Next, I establish the algorithmic reduction from Max 2-SAT (as in Lemma 2).

Lemma 7. If weakly tractable choice correspondence maximizes expected utility, for

𝑑𝑛 ∶= Had(𝐺𝑛(𝑢 ∣ 𝛿𝑛)) and 1

𝛿𝑛
= 𝑂 (poly(𝑛))

Then there exists an 𝑂(poly(𝑛))-time algorithm to solve Max 2-SAT for any boolean for-
mula with at most 𝑑𝑛 variables. This algorithm uses at most 𝑂(poly(𝑛))-size advice.

The advice in Lemma 7 has two parts. First, it describes the largest complete minor
of the inseparability graph 𝐺𝑛(𝑢). This is the same minor that is used to define the
Hadwiger number, and it has exactly 𝑑𝑛 nodes. Second, it identifies points where the
utility function 𝑢 is not (𝑖, 𝑗, 𝑛, 𝛿)-separable. That is, for every pair of dimensions 𝑖, 𝑗 ≤
𝑛 where 𝑢 is not (𝑖, 𝑗, 𝑛, 𝛿)-separable, it describes the corresponding violation.

Corollary 2. If weakly tractable choice correspondence maximizes expected utility, for

Had(𝐺𝑛(𝑢 ∣ 𝛿𝑛)) = Ω(poly(𝑛)) and 1

𝛿𝑛
= 𝑂 (poly(𝑛)) (12)

then there exists a 𝑂(poly(𝑛))-time algorithm for Max 2-SAT with 𝑛 variables. This algo-
rithm uses at most 𝑂(poly(𝑛))-size advice. This contradicts NP ⊄ P∕poly.
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This corollary completes the proof of Theorem 3, since the only utility functions
that do not satisfy condition (12) are Hadwiger separable.

C.2 Proof Outline of Theorem 4

To prove Theorem4, I use a dynamic choice bracketing algorithm. If the utility function
is stronglyHadwiger separable, the algorithmmaximizes expected utility in polynomial
time. To define the algorithm, I first need to review some graph theory.

Definition 24. Let𝐺 be an undirected graph. The degree of node 𝑖 is the number of nodes
𝑗 ≠ 𝑖 with which 𝑖 shares an edge. The contraction degeneracy cdgn(𝐺) is the smallest
number 𝑑 such that every minor 𝐺′ of 𝐺 has a vertex with degree at most 𝑑.

Lemma 8. If 𝑢 is strongly Hadwiger separable, then cdgn(𝐺𝑛(𝑢)) = 𝑂(1).

I define Algorithm 3 on the next page. This algorithm takes in a product menu𝑀
and outputs a lottery 𝑋 = (𝑋∗

1
,… , 𝑋∗

𝑛) ∈ 𝑀. It is parameterized by a utility function 𝑢
and the contraction degeneracy 𝑑 of the inseparability graph 𝐺𝑛(𝑢). It uses advice to
describe the inseparability graph 𝐺𝑛(𝑢) and efficiently compute the utility function.

After reviewing Algorithm 3, see Figure 9 for a concrete example. The figure de-
picts nine iterations of Algorithm 3 on a nine-dimensional product menu. It shows
how the predecessors, successors, and indirect influencers are defined in terms of the
inseparability graph 𝐺𝑛(𝑢), and how these sets change as the algorithm iterates.

Algorithm 3 is at least superficially similar to dynamic choice bracketing, but this
connection is not immediate. It is not even clear that Algorithm 3 is well-defined. I
begin by showing that step 1 is feasible and can be done in polynomial time.

Lemma 9. Let 𝐺 be an undirected graph with contraction degeneracy 𝑑. There exists a
polynomial-time algorithm that converts 𝐺 into an directed acyclic graph �⃗� by assigning
a direction to each edge in 𝐺, where each node 𝑖 has at most 𝑑 outgoing edges.

Next, I show that step 5d of the algorithm will never return an error.

Lemma 10. Let undirected graph𝐺 have contraction degeneracy𝑑. Recall directed graph
�⃗� from Lemma 9. There is a node 𝑖 in �⃗� with at most 𝑑 indirect influencers.

Given Lemmas 9-10, I show Algorithm 3 is a form of dynamic choice bracketing.

Lemma 11. Algorithm 3 is a special case of Algorithm 1.
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Input: product menu𝑀; inseparability graph 𝐺 ∶= 𝐺𝑛(𝑢) with contraction
degeneracy 𝑑; advice needed to efficiently compute utility function 𝑢.

Process:

1. Convert undirected graph 𝐺 into a directed acyclic graph �⃗� by assigning
direction to each edge in 𝐺. Each node in �⃗� has at most 𝑑 outgoing edges.

2. Do a topological sort of �⃗�. Without loss of generality, assume that the
coordinates 𝑖 = 1,… , 𝑛 are already sorted correctly.

3. Define a frontier 𝐹 ⊆ {1,… , 𝑛} that is initially empty. Later, this will keep
track of unvisited nodes 𝑖 that are successors to some visited node 𝑗.

4. Let 𝑖 be the smallest unvisited node in �⃗�.

5. (a) The successors 𝑆𝑖 are unvisited nodes 𝑗 where 𝐺 contains edge (𝑖, 𝑗).
(b) The predecessors 𝑃𝑖 are visited nodes 𝑗 where 𝑋∗

𝑗
(⋅) depends on 𝑋𝑖.

(c) The indirect influencers 𝐼𝑖 are frontier nodes 𝑗 ∈ 𝐹 ⧵ {𝑖} where 𝐺
contains a path between 𝑖 and 𝑗 that does not pass through any
unvisited nodes (other than the terminal nodes 𝑖 or 𝑗).

(d) If there are more than 𝑑 indirect influencers, i.e. |𝐼𝑖| > 𝑑, repeat
step 5 with the smallest unvisited node 𝑗 > 𝑖.

(e) Define
𝑉𝑖(𝑋𝑖, 𝑋𝑆𝑖

, 𝑋𝑃𝑖
) = E

[
𝑢
(
𝑋𝑖, 𝑋𝑆𝑖

, 𝑋𝑃𝑖
, 0, 0,…

)]

That is, the value is expected utility under the (possibly false)
assumption that 𝑋𝑗 = 0 for all coordinates 𝑗 ∉ {𝑖} ∪ 𝑆𝑖 ∪ 𝑃𝑖.

6. Run steps 5 and 6 of the dynamic choice bracketing algorithm (1).

7. Label node 𝑖 as visited. Update frontier 𝐹 by adding 𝑆𝑖 and deleting 𝑖, i.e.

𝐹 ∶= (𝐹 ∪ 𝑆𝑖) ⧵ {𝑖}

Return to step 4 if any unvisited nodes remain in �⃗�.

Output:
(
𝑋∗
1
,… , 𝑋∗

𝑛

)
∈ 𝒳. This is well-defined because, once all coordinates

have been visited, choices 𝑋∗

𝑖
(⋅) have no remaining arguments.

Algorithm 3: Dynamic choice bracketing that maximizes expected utility.
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Iteration 1

𝑆1 = {2, 3}, 𝑃1 = ∅, 𝐼1 = ∅

1 2 3

4 5

8 9

6

7

Iteration 2

𝑆2 = {6}, 𝑃2 = ∅, 𝐼2 = ∅

1 2 3

4 5

8 9

6

7

Iteration 3

𝑆3 = {6}, 𝑃3 = ∅, 𝐼3 = {6}

1 2 3

4 5

8 9

6

7

Iteration 4

𝑆4 = {5}, 𝑃4 = {1}, 𝐼4 = {5}

1 2 3

4 5

8 9

6

7

Iteration 5

𝑆5 = {6, 8}, 𝑃5 = {1, 4}, 𝐼5 = {6}

1 2 3

4 5

8 9

6

7

Iteration 6

𝑆6 = {9}, 𝑃6 = {2, 3, 5}, 𝐼6 = {8}

1 2 3

4 5

8 9

6

7

Iteration 7

𝑆7 = ∅, 𝑃7 = ∅, 𝐼7 = ∅

1 2 3

4 5

8 9

6

7

Iteration 8

𝑆8 = {9}, 𝑃8 = {5}, 𝐼8 = {9}

1 2 3

4 5

8 9

6

7

Iteration 9

𝑆9 = ∅, 𝑃9 = {6, 8}, 𝐼9 = ∅

1 2 3

4 5

8 9

6

7

Figure 9: Each diagram depicts the directed graph �⃗� for some iteration of algorithm 3.
The node 𝑖 that is currently being visited is blue. The frontier nodes 𝐹 have a dashed
outline. The predecessors𝑃𝑖 are red, and all other visited nodes are grey. The successors
𝑆𝑖 are green. The indirect influencers 𝐼𝑖 are yellow. A node 𝑗 ∈ 𝑆𝑖 ∩ 𝐼𝑖 is green on the
interior and yellow on the exterior, like node 5 in iteration 4. The bracket size is three
because there are never more than three nodes in {𝑖} ∪ 𝑆𝑖 ∪ 𝐼𝑖.
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I show that Algorithm 3 is optimal.

Lemma 12. Algorithm 3 maximizes expected utility. That is, it outputs a lottery 𝑋∗ ∈

𝑐(𝑀) that maximizes expected utility.

It only remains to show that Algorithm 3 runs in polynomial time, by proving what
is known as a fixed-parameter tractability result. The key step is to show that the algo-
rithm’s runtime depends exponentially on a parameter 𝑑 that is held fixed, but polyno-
mially on all other relevant parameters. As before, let𝑀 be an 𝑛-dimensional product
menuwhere partialmenus𝑀𝑖 consist of 𝑘 partial lotteries𝑋𝑖, and each𝑋𝑖 ismeasurable
with respect to the same𝑚 intervals in the sample space.

Lemma 13. Algorithm 3 has a runtime of

𝑂(poly(𝑛,𝑚, 𝑘) ⋅ poly(𝑘)𝑑) (13)

Since 𝑢 is strongly Hadwiger separable, Lemma 8 implies 𝑑 = 𝑂(1). Plugging this
into expression (13) yields a runtime of 𝑂(poly(𝑛,𝑚, 𝑘)), and completes the proof.

C.3 Proof of Lemma 1

First, suppose that the utility function 𝑢 is additively separable (Definition 5). Then
there cannot exist items 𝑎, 𝑏 ∈ 𝑆 and an outcome �⃗� ∈ �⃗� such that

𝑢(𝑎, 𝑎, 𝑥3, 𝑥4,…) + 𝑢(𝑏, 𝑏, 𝑥3, 𝑥4,…) ≠ 𝑢(𝑎, 𝑏, 𝑥3, 𝑥4,…) + 𝑢(𝑏, 𝑎, 𝑥3, 𝑥4,…) (14)

Applying the definition of additive separability, inequality (14) becomes

𝑣(𝑎)+𝑣(𝑎)+

∞∑

𝑖=3

𝑣(𝑥𝑖)+𝑣(𝑎)+𝑣(𝑏)+

∞∑

𝑖=3

𝑣(𝑥𝑖) ≠ 𝑣(𝑎)+𝑣(𝑏)+

∞∑

𝑖=3

𝑣(𝑥𝑖)+𝑣(𝑏)+𝑣(𝑎)+

∞∑

𝑖=3

𝑣(𝑥𝑖)

But the left- and right-hand sides are clearly equal.
Next, suppose that there do not exist items 𝑎, 𝑏 ∈ 𝑆 and an outcome �⃗� ∈ �⃗� such

that inequality (14) holds. It follows that for any 𝑎, 𝑏 ∈ 𝑆 and �⃗� ∈ �⃗�,

𝑢(𝑎, 𝑏, 𝑥3, 𝑥4,…) =
1

2
⋅ 𝑢(𝑎, 𝑎, 𝑥3, 𝑥4,…) +

1

2
⋅ 𝑢(𝑏, 𝑏, 𝑥3, 𝑥4,…)
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Set 𝑎 = 𝑥1 and 𝑏 = 𝑥2. Then

𝑢(�⃗�) =
1

2
⋅ 𝑢(𝑥1, 𝑥1, 𝑥3, 𝑥4,…) +

1

2
⋅ 𝑢(𝑥2, 𝑥2, 𝑥3, 𝑥4,…) (15)

This is the base case for a proof by induction. The inductive hypothesis says, for 𝑘 ≥ 2,

𝑢(�⃗�) =
1

𝑘

𝑘∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 times

, 𝑥𝑘+1, 𝑥𝑘+2,…)

Following the same reasoning that led to equation (15), observe that

𝑢(�⃗�) =
1

2𝑘

𝑘∑

𝑖=1

⎛

⎜
⎜

⎝

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…) + 𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 − 1 times

, 𝑥𝑘+1, 𝑥𝑘+1, 𝑥𝑘+2,…)

⎞

⎟
⎟

⎠

=
1

2𝑘

𝑘∑

𝑖=1

⎛

⎜
⎜

⎝

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…) + 𝑢(𝑥′)

⎞

⎟
⎟

⎠

(16)

where �⃗�′ = (𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 − 1 times

, 𝑥𝑘+1, 𝑥𝑘+1, 𝑥𝑘+2,…). By the inductive hypothesis,

𝑢(�⃗�′) =
1

𝑘

𝑘∑

𝑗=1

𝑢(𝑥′
𝑗
,… , 𝑥′

𝑗

⏟⎴⏟⎴⏟
𝑘 times

, 𝑥′
𝑘+1

, 𝑥′
𝑘+2

,…)

=
1

𝑘

⎛

⎜
⎜

⎝

𝑢(𝑥′
𝑘
,… , 𝑥′

𝑘
⏟⎴⏟⎴⏟
𝑘 times

, 𝑥′
𝑘+1

, 𝑥′
𝑘+2

,…) +

𝑘−1∑

𝑗=1

𝑢(𝑥′
𝑗
,… , 𝑥′

𝑗

⏟⎴⏟⎴⏟
𝑘 times

, 𝑥′
𝑘+1

, 𝑥′
𝑘+2

,…)

⎞

⎟
⎟

⎠

=
1

𝑘

⎛

⎜
⎜

⎝

𝑢(𝑥𝑘+1,… , 𝑥𝑘+1
⏟⎴⎴⏟⎴⎴⏟

𝑘 + 1 times

, 𝑥𝑘+2,…) + (𝑘 − 1)𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 times

, 𝑥𝑘+1, 𝑥𝑘+2,…)

⎞

⎟
⎟

⎠
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Plug this into equation (16) to find that

𝑢(�⃗�) =
1

2𝑘

𝑘∑

𝑖=1

⎛

⎜
⎜

⎝

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…) +
1

𝑘

⎛

⎜
⎜

⎝

𝑢(𝑥𝑘+1,… , 𝑥𝑘+1
⏟⎴⎴⏟⎴⎴⏟

𝑘 + 1 times

, 𝑥𝑘+2,…) + (𝑘 − 1)𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 times

, 𝑥𝑘+1, 𝑥𝑘+2,…)

⎞

⎟
⎟

⎠

⎞

⎟
⎟

⎠

=
1

2𝑘

𝑘∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…) +
1

2𝑘
𝑢(𝑥𝑘+1,… , 𝑥𝑘+1
⏟⎴⎴⏟⎴⎴⏟

𝑘 + 1 times

, 𝑥𝑘+2,…) +
𝑘 − 1

2𝑘2

𝑘∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 times

, 𝑥𝑘+1, 𝑥𝑘+2,…)

=
1

2𝑘

𝑘+1∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…) +
𝑘 − 1

2𝑘
⋅ 𝑢(�⃗�)

=
1

2𝑘

𝑘+1∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…) +
𝑘 − 1

2𝑘
⋅ 𝑢(�⃗�)

Rearranging this equation yields

(1 −
𝑘 − 1

2𝑘
)𝑢(�⃗�) =

1

2𝑘

𝑘+1∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑘 + 1 times

, 𝑥𝑘+2,…)

Simplifying this confirms the inductive hypothesis for 𝑘 + 1. It follows that

𝑢(�⃗�) =
1

𝑛

𝑛∑

𝑖=1

𝑢(𝑥𝑖,… , 𝑥𝑖
⏟⎴⏟⎴⏟
𝑛 times

, 0, 0,…) (17)

Set 𝑥 = (𝑧, 0, 0,…). This outcome is 𝑛-dimensional for any 𝑛 ≥ 1. Observe that

𝑢(𝑧, 0, 0,…) =
1

𝑛
⋅ 𝑢(𝑧,… , 𝑧

⏟⏟⏟
𝑛 times

, 0, 0,…) +
𝑛 − 1

𝑛
⋅ 𝑢(0, 0,…) (18)

Recall that 𝑢(0, 0,…) = 0. Plugging equation (18) into equation (17) yields

𝑢(�⃗�) =

𝑛∑

𝑖=1

𝑢(𝑥𝑖, 0, 0,…)

Therefore, 𝑢 is additively separable.
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C.4 Proof of Lemmas 2 and 7

I prove Lemma 7 and show that Lemma 2 follows as a corollary. Before proceeding, I
recommend reading the proof of the special case of Theorem 1 (Appendix B.3).

Fix a utility function𝑢 and let𝑑𝑛 = Had(𝐺𝑛(𝑢 ∣ 𝛿𝑛)). Let𝑀 denote an𝑛-dimensional
product menu. Let formula BF have 𝑑𝑛 variables v1,… , v𝑑𝑛 .

The proof consists of two major steps. In Step 1, I construct an auxiliary formula
BF′ with 𝑛 variables v′

1
,… , v′𝑛, using polynomial-size advice. This will be an instance of

a weightedMax 2-SAT problem (where weights are allowed to be negative) and its solu-
tion corresponds to a solution to the original problem. In Step 2, I reduce weightedMax
2-SAT to expected utility maximization, using polynomial-size advice. It follows from
these two steps that solving Max 2-SAT for the original formula BF is weakly tractable
if expected utility maximization is weakly tractable.

C.4.1 Step 1: Max 2-SAT toWeighted Max 2-SAT

Let �̃�𝑛(𝑢 ∣ 𝛿𝑛) be the largest complete minor of 𝐺𝑛(𝑢 ∣ 𝛿𝑛). By definition, this has 𝑑𝑛
nodes. Let 𝑘 be an arbitrary node in �̃�𝑛(𝑢 ∣ 𝛿𝑛). By definition of the graph minor, there
is a subset of nodes in 𝐺𝑛(𝑢 ∣ 𝛿𝑛) whose edges were contracted to form 𝑘. Let 𝜏 denote
the size of this subset, and let 𝑘1,… , 𝑘𝜏 denote the nodes themselves.

First, I add clauses to the auxiliary formula BF′ that represent clauses in the original
formula BF. Consider a clause CL𝑗 in the original formula BF. Let v𝑖 be a variable
represented in CL𝑗, which corresponds to node 𝑘𝑗,𝑖 in �̃�𝑛(𝑢 ∣ 𝛿𝑛).

For each clause 𝑗 and pair of variables (say, 𝑖 and−𝑖), choose two nodes ℎ𝑗,𝑖 and ℎ𝑗,−𝑖

in the inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛) that share an edge, where

ℎ𝑗,𝑖 ∈ {𝑘
𝑗,𝑖

1
,… , 𝑘

𝑗,𝑖

𝜏 } and ℎ𝑗,−𝑖 ∈ {𝑘
𝑗,−𝑖

1
,… , 𝑘

𝑗,−𝑖

𝜏 }

I claim that it is always possible to find such a pair. Since �̃�𝑛(𝑢 ∣ 𝛿𝑛) is a complete
graph, there is an edge between nodes 𝑘𝑗,𝑖 and 𝑘𝑗,−𝑖 in �̃�𝑛(𝑢 ∣ 𝛿𝑛). Since �̃�𝑛(𝑢 ∣ 𝛿𝑛)

was produced by edge contractions, that edge (𝑘𝑗,𝑖, 𝑘𝑗,−𝑖) can exist only if they represent
nodes that share an edge in 𝐺𝑛(𝑢 ∣ 𝛿𝑛). This proves the claim.

Having defined two nodes ℎ𝑗,𝑖 and ℎ𝑗,−𝑖 in the inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛), I
will construct clauses that consists of the corresponding variables v′

ℎ𝑗,𝑖
and v′

ℎ𝑗,−𝑖
in the

formula BF. Recall from Lemma 6 that since ℎ𝑗,𝑖 and ℎ𝑗,−𝑖 share an edge in the insep-
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arability graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛), there is a violation of
(
(ℎ𝑗,𝑖, ℎ𝑗,−𝑖), 𝑛, 𝛿𝑛

)
-separability. That

violation consists of 𝑛-dimensional outcome 𝑥𝑗 and quadruple 𝑎𝑗
1
, 𝑎

𝑗

2
, 𝑏

𝑗

1
, 𝑏

𝑗

2
∈ [0, 1].

For convenience, given some 𝑎, 𝑏 ∈ [0, 1], let

�̃�𝑗(𝑎, 𝑏) ∶= 𝑢
(
… , 𝑥

𝑗

ℎ𝑗,𝑖−1
, 𝑎, 𝑥

𝑗

ℎ𝑗,𝑖+1
,… , 𝑥

𝑗

ℎ𝑗,−𝑖−1
, 𝑏, 𝑥

𝑗

ℎ𝑗,−𝑖+1
,…
)

The clauses I add depend on the violation’s direction. There are two cases.

1. Add the clause v′
ℎ𝑗,𝑖

∨ v′
ℎ𝑗,−𝑖

to the auxilliary formula, with weight 1, if

�̃�𝑗(𝑎
𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) > �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) (19)

2. Add three clauses ¬v′
ℎ𝑗,𝑖

∨ ¬v′
ℎ𝑗,−𝑖

, ¬v′
ℎ𝑗,𝑖

∨ v′
ℎ𝑗,−𝑖

, and v′
ℎ𝑗,𝑖

∨ ¬v′
ℎ𝑗,−𝑖

to the auxilliary
formula, with weight −1, if

�̃�𝑗(𝑎
𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) < �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) (20)

For intuition, compare the three clauses in case 2 to the clause v′
ℎ𝑗,𝑖
∨ v′

ℎ𝑗,−𝑖
in case 1. The

case 1 clause is true if and only if exactly two of the three case 2 clauses are satisfied. The
case 1 clause is false if and only if all three of the case 2 clauses are satisfied. Therefore,
the unweighted case 2 clauses are a way to represent the assertion that the case 1 clause
is false. By addingweight−1, this effectively becomes an assertion that the case 1 clause
is true.

Next, I add clauses to the auxiliary formula BF′ that capture the constraint that, for
any node 𝑘 in𝐺′

𝑛(𝑢), we have v′𝑘𝑖 = v′
𝑘𝑗
for all 𝑖, 𝑗 ≤ 𝜏. Without loss of generality, suppose

that 𝑘1,… , 𝑘𝑛 are ordered in a way where 𝑘𝑖 has an edge with 𝑘𝑖+1 in the inseparability
graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛). This is always possible since node 𝑘 was created by contracting a
sequence of edges (𝑘𝑖, 𝑘𝑖+1) in 𝐺𝑛(𝑢 ∣ 𝛿𝑛). Let 𝑥𝑘𝑖 , (𝑎

𝑘𝑖
1
, 𝑎

𝑘𝑖
2
, 𝑏

𝑘𝑖
1
, 𝑏

𝑘𝑖
2
) be a violation of

(𝑘𝑖, 𝑘𝑖+1, 𝑛, 𝛿𝑛)-separability, and let

�̃�𝑘𝑖(𝑎, 𝑏) ∶= 𝑢
(
… , 𝑥

𝑘𝑖

𝑘𝑖−1
, 𝑎, 𝑥

𝑘𝑖

𝑘𝑖+1
,… , 𝑥

𝑘𝑖

𝑘𝑖+1−1
, 𝑏, 𝑥

𝑘𝑖

𝑘𝑖+1+1
,…
)

Let 𝛾 > 0 be a constant that I specify later. As before, there are two cases.

1. Add clauses v′
𝑘𝑖
∨ ¬v′

𝑘𝑗
and ¬v′

𝑘𝑖
∨ v′

𝑘𝑗
to auxiliary formula BF′, with weight 𝛾, if

�̃�𝑘𝑖(𝑎
𝑘𝑖
1
, 𝑎

𝑘𝑖
2
) + �̃�𝑗(𝑏

𝑘𝑖
1
, 𝑏

𝑘𝑖
2
) > �̃�𝑗(𝑎

𝑘𝑖
1
, 𝑏

𝑘𝑖
2
) + �̃�𝑗(𝑏

𝑘𝑖
1
, 𝑎

𝑘𝑖
2
)
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Note that an assignment where v′
𝑘𝑖
≠ v′

𝑘𝑖+1
will make one of the two clauses false,

whereas an assignment where v′
𝑘𝑖
= v′

𝑘𝑖+1
will make both clauses true. All else

equal, since clauses have weight 𝛾 > 0, weighted Max 2-SAT prefers v′
𝑘𝑖
= v′

𝑘𝑖+1
.

2. Add clauses v′
𝑘𝑖
∨ v′

𝑘𝑗
and ¬v′

𝑘𝑖
∨ ¬v′

𝑘𝑗
to auxiliary formula BF′, with weight −𝛾, if

�̃�𝑘𝑖(𝑎
𝑘𝑖
1
, 𝑎

𝑘𝑖
2
) + �̃�𝑗(𝑏

𝑘𝑖
1
, 𝑏

𝑘𝑖
2
) < �̃�𝑗(𝑎

𝑘𝑖
1
, 𝑏

𝑘𝑖
2
) + �̃�𝑗(𝑏

𝑘𝑖
1
, 𝑎

𝑘𝑖
2
)

Note that an assignment where v′
𝑘𝑖
≠ v′

𝑘𝑖+1
will make both of the two clauses true,

whereas an assignment where v′
𝑘𝑖
= v′

𝑘𝑖+1
will make only one clause true. All else

equal, since clauses have weight −𝛾, weighted Max 2-SAT still prefers v′
𝑘𝑖
= v′

𝑘𝑖+1
.

Intuitively, if the weight 𝛾 is large enough, then weighted Max 2-SAT will prioritize
v′
𝑘𝑖
= v′

𝑘𝑖+1
over satisfying any of the other clauses in BF′. Since this applies for all

𝑖 = 1,… , 𝜏, this will ensure that v′
𝑘𝑖
= v′

𝑘𝑗
for all 𝑖, 𝑗 ≤ 𝜏.

I have added all the clauses and only need to specify the weight parameter 𝛾 of the
clauses that represent constraints. Let there be 𝑚 clauses in the original formula BF.
Let 𝛾 ∶= 2𝑚 + 1. Let 𝑚1 be the number of clauses 𝑗 in BF that fall into case 1 above,
and let 𝑚2 be the number that fall into case 2. Observe that 𝑚1 + 𝑚2 = 𝑚. Let 𝑛0 be
the number of nodes in 𝐺𝑛(𝑢 ∣ 𝛿𝑛) that were deleted to form the minor �̃�𝑛(𝑢 ∣ 𝛿𝑛). Let
𝑛1 ∶= 𝑛 − 𝑛0. In that case, any assignment that satisfies v′𝑘𝑖 = v′

𝑘𝑗
for all 𝑖, 𝑗, 𝑘 has a

weighted value of at least
2(𝑛1 − 1)(2𝑚 + 1) − 3𝑚2 (21)

in the worst case where, among the clauses in BF′ that represent clauses in BF, all
the case 1 clauses with positive weight are not satisfied and all the case 2 clauses with
negative weight are satisfied. There are 3𝑚2 such clauses, with combinedweight−3𝑚2.
Whereas 2(𝑛1 − 1) is the number of clauses that represent constraints, multiplied by
their weight 2𝑚 + 1.

In contrast, if v′
𝑘𝑖
≠ v′

𝑘𝑗
for some 𝑖, 𝑗, 𝑘, the assignment has weighted value at most

2(𝑛1 − 1)(2𝑚 + 1) − (2𝑚 + 1) − 2𝑚2 +𝑚 (22)

Here, either ¬v′
𝑘𝑖
∨ v′

𝑘𝑗
or v′

𝑘𝑖
∨ ¬v′

𝑘𝑗
. The fact that one of these clauses is false implies a

weighted loss of𝑚+1. Among the clauses in BF′ that represent clauses in BF, the best
case occurs when all the case 1 clauses are true and one of every three case 2 clauses
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are true (since at least two of three case 2 clauses are always satisfied). These clauses
add a combined weight of −2𝑚2 +𝑚. The fact that

(21) − (22) = −3𝑚2 + (2𝑚 + 1) + 2𝑚2 −𝑚 = −𝑚2 +𝑚 + 1 > 0

means that, even in the best case, it is not worth violating the constraint.
It follows that the constraint v′

𝑘𝑖
= v′

𝑘𝑗
is satisfied in any solution to weighted Max

2-SAT. Given this constraint, any assignment in BF has a corresponding assignment in
BF′ where setting v𝑘 = true is equivalent to setting v′

𝑘𝑖
= true for all 𝑖 = 1,… , 𝜏. If the

assignment in BF satisfies some number𝑚0 of clauses, then the assignment in BF′ has
weighted value

2(𝑛1 − 1)(2𝑚 + 1) − 2𝑚2 +𝑚0

by construction. Holding the formula BF fixed, this is proportional to 𝑚0. That is, the
number of clauses satisfied in BF is proportional to weighted value in BF′.

So, a solution to weighted Max 2-SAT for the auxiliary formula BF′ can be turned
into a solution toMax 2-SAT for the original formula BF. The auxiliary formula BF′ can
be constructed in 𝑂(poly(𝑛)) time, given advice that describes the inseparability graph
𝐺𝑛(𝑢 ∣ 𝛿𝑛), largest complete minor �̃�𝑛(𝑢 ∣ 𝛿𝑛), and violations of (𝑖, 𝑗, 𝑛, 𝛿𝑛)-separability.

C.4.2 Step 2: Weighted Max 2-SAT to Expected Utility Maximization

Having described the auxilliary problem, it remains to construct a menu such that ex-
pected utility maximization corresponds to solving weighted MAX 2-SAT.

I begin by splitting the sample space into intervals that represent clauses CL′𝑗 in
BF′. Let 𝑚′ be the number of clauses in BF′. By construction, each clause CL′𝑗 has
some weight 𝑤𝑗. Let 𝛽𝑗 ≥ 0 be a constant that will be defined later. Associate each
clause CL′𝑗 with an interval Ω𝑗 ⊆ Ω of length

𝑙𝑗 =
𝛽𝑗|𝑤𝑗|

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

where I define the coefficients 𝛽1,… , 𝛽𝑚′ below. Partition each interval Ω𝑗 into six
equally-sized subintervals, Ω𝑗

1
,… ,Ω

𝑗

6
.
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The menu𝑀 = 𝑀𝑢(BF
′
) is an 𝑛-dimensional product menu, with partial menus

𝑀𝑖 =
(
𝑋𝑇

𝑖
, 𝑋𝐹

𝑖

)

where the assignment 𝑂𝑢(𝑋) sets v′𝑖 = true if 𝑋𝑖 = 𝑋𝑇

𝑖
and v′

𝑖
= false if 𝑋𝑖 = 𝑋𝐹

𝑖
. To

define the partial lotteries 𝑋𝑇

𝑖
and 𝑋𝐹

𝑖
as follows, I proceed iteratively. By construction

of BF′, there is a violation associated with clause 𝑗, i.e.,

�̃�𝑗(𝑎
𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) ≠ �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)

I refer to this violation, as well as the literals v′
𝑗1
and v′

𝑗2
of clause CL′𝑗 = v′

𝑗1
∨ v′

𝑗2
, when

constructing the partial lotteries 𝑋𝑇

𝑖
and 𝑋𝐹

𝑖
. For any 𝜔 ∈ Ω𝑗, the following holds.

• If v𝑖 = v𝑗1 then 𝑋𝑇

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

1

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

2

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

3

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

4

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

5

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

6

and 𝑋𝐹

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

1

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

2

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

3

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

4

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

5

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

6

• If v𝑖 = ¬v𝑗1 then 𝑋𝑇

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

1

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

2

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

3

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

4

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

5

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

6

and 𝑋𝐹

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

1

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

2

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

3

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

4

𝑎
𝑗

1
𝜔 ∈ Ω

𝑗

5

𝑏
𝑗

1
𝜔 ∈ Ω

𝑗

6

• If v𝑖 = v𝑗2 then 𝑋𝑇

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

1

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

2

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

3

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

4

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

5

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

6

and 𝑋𝐹

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

1

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

2

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

3

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

4

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

5

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

6
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• If v𝑖 = ¬v𝑗2 then 𝑋𝑇

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

1

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

2

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

3

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

4

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

5

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

6

and 𝑋𝐹

𝑖
(𝜔) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

1

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

2

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

3

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

4

𝑎
𝑗

2
𝜔 ∈ Ω

𝑗

5

𝑏
𝑗

2
𝜔 ∈ Ω

𝑗

6

• Otherwise, 𝑋𝑇

𝑖
(𝜔) = 𝑋𝐹

𝑖
(𝜔) = 𝑥

𝑗

𝑖
.

Consider the conditional expected utility in four subcases.

1. Suppose that the assignment𝑂𝑢(𝑋)makes both v′𝑗1 and v
′

𝑗2
true. By construction:

• If 𝜔 ∈ Ω
𝑗

1
, then 𝑢(𝑋(𝜔)) = �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
).

• If 𝜔 ∈ Ω
𝑗

2
, then 𝑢(𝑋(𝜔)) = �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
).

• If 𝜔 ∈ Ω
𝑗

3
, then 𝑢(𝑋(𝜔)) = �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
).

• If 𝜔 ∈ Ω
𝑗

4
, then 𝑢(𝑋(𝜔)) = �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
).

• If 𝜔 ∈ Ω
𝑗

5
, then 𝑢(𝑋(𝜔)) = �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
).

• If 𝜔 ∈ Ω
𝑗

6
, then 𝑢(𝑋(𝜔)) = �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
).

It follows that the conditional expected utility is:

E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]
(23)

=

6∑

𝑙=1

Pr
[
𝜔 ∈ Ω

𝑗

1
∣ 𝜔 ∈ Ω𝑗

]
⋅ �̃�𝑗(𝑋(Ω𝑙))

=
1

6
⋅
(
�̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
)
)

where the first equality follows from the law of iterated expectations and the sec-
ond equality follows from 𝜔 being uniformly distributed in Ω = [0, 1].

2. Suppose that the assignment 𝑂𝑢(𝑋) makes v′𝑗1 false and v
′

𝑗2
true. Following the

same reasoning as in subcase 1, conditional expected utility E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]
is

1

6

(
�̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
)
)
(24)
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3. Suppose that the assignment 𝑂𝑢(𝑋)makes v′𝑗1 true and v
′

𝑗2
false. Then the condi-

tional expected utility E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]
is

1

6

(
�̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
)
)
(25)

4. Suppose that the assignment 𝑂𝑢(𝑋)makes both v′𝑗1 and v
′

𝑗2
false. Then the condi-

tional expected utility E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]
is

1

6

(
�̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
)
)
(26)

This construction has two properties. First, it ensures that the first three subcases,
in which clause CL′𝑗 is true, are associated with the same conditional expected utility.
Second, it ensures that the fourth subcase, in which clause CL′𝑗 is false, is associated
with a different conditional expected utility than the other subcases. Formally,

(23) = (24) = (25) = 1

6
⋅
(
2�̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + 2�̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)
)

≠
1

6
⋅ 3
(
�̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)
)

= (26)

Following this, observe that the conditional expected utility is an affine function of
whether the clause CL′𝑗 is true. That is, E

[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]
is

1

6
⋅ 2
(
�̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)
)
⋅ 1(CL′𝑗 = true, given 𝑂𝑢(𝑋))

+
1

6
⋅ 3
(
�̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)
)

In order to extend this proportionality to the unconditional expected utility, set the
coefficients 𝛽1,… , 𝛽𝑚′ as follows:

𝛽𝑗 = 3
|||||
�̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)
|||||

−1

Recall from Step 1 of this lemma that the weight𝑤𝑗 is positive whenever inequality (19)
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holds and negative whenever inequality (20) holds. In either case, by inspection,

Pr
[
𝜔 ∈ Ω𝑗

]
⋅ E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]

=
𝛽𝑗𝑤𝑗

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅ E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]

=
𝑤𝑗 ⋅ 1(CL

′

𝑗 = true, given 𝑔𝑢(𝑋))
∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

= +
3𝑤𝑗

2
∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅
�̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)

�̃�𝑗(𝑎
𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)

Furthermore, by the law of iterated expectations,

E[𝑢(𝑋)] =

𝑚′

∑

𝑗=1

Pr
[
𝜔 ∈ Ω𝑗

]
⋅ E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]

∝ 𝑤𝑗 ⋅ 1(CL𝑗 = true, given 𝑔𝑢(𝑋))

Since output function 𝑂𝑢 is surjective, this implies that any lottery 𝑋 that maximizes
expected utility yields an assignment 𝑂𝑢(𝑋) that solves weighted Max 2-SAT.

At this point, the proof is almost complete. To recap, I have argued that maximizing
expected utility is equivalent to solving the weighted Max 2-SAT problem for auxilliary
formula BF′. Step 1 shows that solving weighted Max 2-SAT for auxilliary formula BF′

is equivalent to solving Max 2-SAT for original formula BF. So, maximizing expected
utility can be used to solve Max 2-SAT for original formula BF.

However, the proof is not quite complete. For one, I need to verify that the menu
function𝑀𝑢 can be computed in polynomial time with advice.

Claim 1. The menu𝑀 = 𝑀𝑢(BF
′
) can be constructed in 𝑂(𝑛3) time with advice.

Proof. Consider the following algorithm. Loop over 𝑛 coordinates 𝑖 and 𝑚′ = 𝑂(𝑛2)

different clauses 𝑗. At each iteration, keep track of 𝑥𝑗
𝑖
, v𝑗1, and v𝑗2, in addition to the

last element of the linked lists that represent the two partial lotteries 𝑋𝑇

𝑖
and 𝑋𝐹

𝑖
. For

each coordinate 𝑖 and clause 𝑗, check whether one of the following conditions holds:
v𝑖 = v𝑗1, v𝑖 = ¬v𝑗1, v𝑖 = v𝑗2, or v𝑖 = ¬v𝑗2. This can be done in 𝑂(1) time. Depending
on which (if any) condition holds, add six values to the linked lists that represent 𝑋𝑇

𝑖

and 𝑋𝐹

𝑖
in each of the six subintervals Ω𝑗

1
,… ,Ω

𝑗

6
. This takes 𝑂(1) time. Altogether, this
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construction takes 𝑂(𝑛3) time. This algorithm takes the 𝑂(𝑚′) = 𝑂(𝑛2) subintervals
Ω
𝑗

1
,… ,Ω

𝑗

6
as advice, in addition to violations of (𝑖, 𝑗, 𝑛, 𝛿𝑛)-separability.

The last step is to verify that the advice – specifically, the intervalsΩ𝑗 – can be repre-
sented in polynomial space. This is not immediate. Although intervals Ω𝑗 are explicit
functions of the utility of𝑂(𝑚′) = 𝑂(𝑛2) outcomes that can be described in𝑂(𝑛) space,
there is no guarantee that I can compute the utility exactly. Lemma 3 only ensures that
normalized utility 𝑢𝑛 is efficiently computable up to precision 𝜖 > 0.

To resolve this last remaining issue, I use numerical approximations. To simplify
notation, assume the utility function 𝑢 is already normalized (i.e., 𝑢(𝑥) = 𝑢𝑛(𝑥) for
any 𝑛-dimensional outcome 𝑥. Normalization is an affine transformation that does not
affect the choice correspondence. When constructing the menu𝑀 = 𝑀𝑢(BF

′
), replace

the functions �̃�𝑗(⋅) with approximations �̂�𝑗(⋅) where

|||||
�̂�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
)
|||||
≤ 𝜖

These approximations can be computed in 𝑂(poly(𝑛, 1∕𝜖)) time, following the same
argument in Lemma 3, and using any advice needed to compute 𝑐. Accordingly, we
have approximations 𝛽1,… , 𝛽𝑚′ , where

𝛽𝑗

𝛽𝑗
=
|�̂�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̂�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̂�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̂�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)|

|�̃�𝑗(𝑎
𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)|

≤
|�̃�𝑗(𝑎

𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)| + 𝜖

|�̃�𝑗(𝑎
𝑗

1
, 𝑎

𝑗

2
) + �̃�𝑗(𝑏

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑎

𝑗

1
, 𝑏

𝑗

2
) − �̃�𝑗(𝑏

𝑗

1
, 𝑎

𝑗

2
)|

≤
𝛿𝑛 + 𝜖

𝛿𝑛

Similarly, 𝛽𝑗∕𝛽𝑗 ≥ (𝛿𝑛 − 𝜖)∕𝛿𝑛. Consider once again the unconditional expected utility,
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except with the coefficients 𝛽1,… , 𝛽𝑚′ replaced with the approximations 𝛽1,… , 𝛽𝑚′ .

E[𝑢(𝑋)] =

𝑚′

∑

𝑗=1

𝛽𝑗𝑤𝑗

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅ E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]

=
1

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅

𝑚′

∑

𝑗=1

𝛽𝑗 ⋅ 𝑤𝑗 ⋅ E
[
𝑢(𝑋) ∣ 𝜔 ∈ Ω𝑗

]

=
1

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅

𝑚′

∑

𝑗=1

𝛽𝑗

𝛽𝑗
⋅ 𝑤𝑗 ⋅

(
1(CL𝑗 = true, given 𝑔𝑢(𝑋)) + 𝐶𝑗

)

where 𝐶1,… , 𝐶𝑚′ are constants that do not depend on the lottery 𝑋. Now, take any two
lotteries 𝑋 and 𝑋′. Define

∆(𝑋,𝑋′) =

𝑚′

∑

𝑗=1

𝑤𝑗 ⋅ 1(CL𝑗 = true, given 𝑔𝑢(𝑋)) −
𝑚′

∑

𝑗=1

𝑤𝑗 ⋅ 1(CL𝑗 = true, given 𝑔𝑢(𝑋′))

Restrict attention to pairswhere∆(𝑋,𝑋′) > 0. Recall fromStep 1 that𝑤𝑗 ∈ {−𝛾,−1, 1, 𝛾}

by Step 1, where 𝛾 = 2𝑚 + 1. This implies ∆(⋅) is an integer, and ∆(𝑋,𝑋′) > 0 implies
∆(𝑋,𝑋′) ≥ 1. Finally, consider the difference in expected utility:

E[𝑢(𝑋)] − E[𝑢(𝑋′)]

=
1

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅

𝑚′

∑

𝑗=1

𝛽𝑗

𝛽𝑗
⋅ 𝑤𝑗 ⋅

(
1(CL𝑗 = true, given 𝑔𝑢(𝑋)) − 1(CL𝑗 = true, given 𝑔𝑢(𝑋′))

)

≥
1

∑𝑚′

𝑙=1
𝛽𝑙|𝑤𝑙|

⋅
⎛

⎜

⎝

∆(𝑋,𝑋′) −

𝑚′

∑

𝑗=1

|||||||||

𝛽𝑗

𝛽𝑗
− 1

|||||||||

⋅ |𝑤𝑗|
⎞

⎟

⎠

I want to show that, asymptotically,𝑋 generates strictly higher expected utility than𝑋′.
Since ∆(𝑋,𝑋′) ≥ 1, it suffices to show that

|||||||||

𝛽𝑗

𝛽𝑗
− 1

|||||||||

⋅ |𝑤𝑗| = 𝑜(1)

74



It follows from earlier bounds on 𝛽𝑗 that

|||||||||

𝛽𝑗

𝛽𝑗
− 1

|||||||||

⋅ |𝑤𝑗| ≤
𝜖

𝛿𝑛
⋅ |𝑤𝑗| ≤

𝜖

𝛿𝑛
⋅ 𝑂(𝑛2)

where the second inequality follows from |𝑤𝑗| ≤ 𝛾 = 2𝑚 + 1 = 𝑂(𝑛2). Therefore, if
𝜖 = 𝑂

(
𝛿𝑛∕𝑛

3
)
then, asymptotically, 𝑋 is strictly preferred to 𝑋′. This ensures that the

approximation with precision 𝜖 does not affect the optimal lottery. Furthermore, since
1∕𝛿𝑛 = 𝑂(poly(𝑛)), we know that 1∕𝜖 = 𝑂(𝑛3 ⋅ poly(𝑛)) = 𝑂(poly(𝑛)). This ensures
that we can calculate the approximate utility in 𝑂(poly(𝑛)) time.

C.4.3 Proof of Lemma 2

I return now to the model in Section 2 (as opposed to Appendix A).
Since the utility function 𝑢 is an exchangeable function of outcome �⃗�, the insep-

arability graph 𝐺𝑛(𝑢 ∣ 𝛿) is either empty or complete. Condition (2) ensures that the
edge (1, 2) exists for some 𝛿 > 0. For 𝑛 sufficiently large to ensure that 𝛿𝑛 < 𝛿, the
inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛) is complete and its Hadwiger number is 𝑛.

I claim that there exists a polynomial-time algorithm that solves Max 2-SAT. This
follows by combining Lemma 7 with the following two observations. First, as already
stated, the Hadwiger number of the inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛) is 𝑛. Second, by
assumption, the choice correspondence 𝑐 is tractable (hence, weakly tractable).

The proof is not complete, however. The aforementioned algorithm requires advice,
whereas Lemma 2 does not allow advice. Fortunately, the advice used in the proof of
Lemma 7 is not necessary in the special case where 𝑢 is exchangeable:

• By Lemma 3, the utility function 𝑢 is efficiently computable without advice.

• The inseparability graph 𝐺𝑛(𝑢 ∣ 𝛿𝑛) is complete and is identical to the largest
complete minor. Both are easy to compute.

• The violations are easy to compute. Let 𝑎𝑗
1
= 𝑎

𝑗

2
= 𝑎, 𝑏𝑗

1
= 𝑏

𝑗

2
= 𝑏, and 𝑥𝑗 = �⃗�,

with items 𝑎, 𝑏 and 𝑁-dimensional outcome �⃗� defined as in the statement of
Lemma 2. Since all three parameters 𝑎, 𝑏, �⃗� can be hardcoded,27 finding viola-

27Since𝑁 <∞ does not change with 𝑛, �⃗� can be described in constant space. Similarly, items 𝑎, 𝑏 can
be described in constant space. Note that these parameters depend on the utility function 𝑢, but we are
holding the utility function fixed. What varies is the menu �⃗�, but 𝑎, 𝑏, �⃗� do not depend on the menu.
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tions is as easy as shifting the first two entries of (𝑎, 𝑏, 𝑥3,… , 𝑥𝑁, 0, 0,…).

• Given exchangeability, let Ω𝑗 be consecutive intervals of length 1∕𝑚′ and create
six equally-sized subintervals Ω𝑗

1
,… ,Ω

𝑗

6
. This can be computed quickly.

This completes the proof of Lemma 2 as a corollary of Lemma 7. I omit the more direct
proof of Lemma 2 due to space constraints.

C.5 Proof of Lemma 3

Consider outcome �̄�𝑛 ∈ �⃗� that maximizes utility across all 𝑛-dimensional outcomes �⃗�,
and outcome 𝑥𝑛 ∈ �⃗� that minimizes utility across all 𝑛-dimensional outcomes �⃗�.

Given an outcome �⃗� and parameter 𝜖, the Turing machine performs the following
computation. Let 𝑘 = ⌊1∕𝜖⌋. Construct a grid 𝑌 = {𝜖, 2𝜖,… , (𝑘 − 1)𝜖, 𝑘𝜖}. For every
𝑦 ∈ 𝑌, define a lottery �⃗�𝑦 as follows. When𝜔 ≤ 𝑦, �⃗�𝑦(𝜔) = 𝑥𝑛. Otherwise, �⃗�𝑦(𝜔) = �̄�𝑛.
Finally, output the largest value 𝑦 ∈ 𝑌 such that 𝑥 ∈ 𝑐

(
{𝑥, �⃗�𝑦}

)
. This is well-defined

by Assumption 2, which ensures that binary menus are included in the collection ℳ⃗.
This can be done in polynomial time since 𝑐 is tractable.

C.6 Proof of Lemma 4

I show that rational and tractable choice correspondences can perform poorly. Let �̄�
be an objective function that is 𝜖-sublinear and strictly increasing. Let 𝑐 be a rational
and tractable choice correspondence with revealed utility function 𝑢. By Theorem 1, 𝑢
must be additively separable. That is, for 𝑛-dimensional outcomes 𝑥,

𝑢(�⃗�) =

𝑛∑

𝑖=1

𝑣(𝑥𝑖)

Assume for the moment that 𝑣(1) ≥ 𝑣(0).
I construct a product menu 𝑀 where the choice correspondence 𝑐 will perform

poorly. Let each partial menu𝑀𝑖 = {𝑋𝐺

𝑖
, 𝑋𝐵

𝑖
} consist of two partial lotteries:

𝑋𝐺

𝑖
(𝜔) =

⎧

⎨

⎩

1 𝜔 ∈
[
𝑖−1

𝑛+2
,

𝑖

𝑛+2

)

0 otherwise
𝑋𝐵

𝑖
(𝜔) =

⎧

⎨

⎩

1 𝜔 ≥
𝑛

𝑛+2

0 otherwise
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Intuitively, 𝑋𝐵

𝑖
delivers a higher expected value than𝑋𝐺

𝑖
, but the partial lotteries𝑋𝐺

𝑖
are

negatively correlated while the partial lotteries 𝑋𝐵

𝑖
are positively correlated.

I claim that the choice correspondence 𝑐 will choose the partial lottery 𝑋𝐵

𝑖
over 𝑋𝐺

𝑖

for each 𝑖. Compare the expected utility of 𝑋𝐵

𝑖
, i.e.

E
[
𝑢𝑖
(
𝑋𝐵

𝑖

)]
= (

2

𝑛 + 2
) ⋅ 𝑢𝑖(1) + (

𝑛

𝑛 + 2
) ⋅ 𝑢𝑖(0)

with expected utility of 𝑋𝐺

𝑖
, i.e.

E
[
𝑢𝑖
(
𝑋𝐺

𝑖

)]
= (

1

𝑛 + 2
) ⋅ 𝑢𝑖(1) + (

𝑛 + 1

𝑛 + 2
) ⋅ 𝑢𝑖(0)

Since I assumed that 𝑣(1) ≥ 𝑣(0), it is clear that 𝑋𝐵

𝑖
is weakly better according to 𝑢.28

The choice correspondence 𝑐 effectively ignores correlation across dimensions 𝑖.
Unfortunately, always choosing𝑋𝐵

𝑖
is suboptimal from the perspective of the payoff

function �̄�. The expected payoff will be

(
2

𝑛 + 2
) ⋅ �̄�(1,… , 1

⏟⏟⏟
𝑛 times

, 0, 0) + (
𝑛

𝑛 + 2
) ⋅ �̄�(0, 0,…) = (

2

𝑛 + 2
) ⋅ 𝑂(𝑛1−𝜖) = 𝑂(𝑑−𝜖) (27)

where the first equality follows from sublinearity and the fact that �̄�(0, 0,…) = 0. How-
ever, the expected payoff from always choosing 𝑋𝐺

𝑖
is

(
2

𝑛 + 2
) �̄�(0,…) +

𝑛∑

𝑖=1

(
1

𝑛 + 2
) �̄�( 0,… , 0

⏟⏟⏟
𝑖 − 1 times

, 1, 0,…) = (
𝑛

𝑛 + 2
) �̄�(1, 0,…) = Θ(1) (28)

The first equality follows from symmetry and the fact that �̄�(0, 0,…) = 0. The second
equality follows from �̄� being strictly increasing, so that �̄�(1, 0, 0,…) > �̄�(0, 0,…).

Divide (27) by (28) to show that the approximation ratio is at most

APX
�̄�
𝑛(𝑐) = 𝑂(𝑛−𝜖)

This completes the proof for the case where 𝑣(1) ≥ 𝑣(0).
Finally, consider the case where 𝑣(1) < 𝑣(0). Redefine 𝑋𝐵

𝑖
(𝜔) = 0 for all 𝜔 ∈ [0, 1],

28I cannot guarantee that it is strictly better, since there is always the trivial case where 𝑢(�⃗�) = 0. This
does not affect the proof since, by definition, every lottery 𝑋 ∈ 𝑐(𝑀) has to perform well in order for the
choice correspondence 𝑐 to provide a good approximation.
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and let 𝑋𝐺

𝑖
be defined as above. The choice correspondence 𝑐 will still choose 𝑋𝐵

𝑖
over

𝑋𝐺

𝑖
. The expected payoff E

[
�̄�
(
𝑋𝐵
1
,… , 𝑋𝐵

𝑛

)]
can only decrease relative to my original

construction, but the expected payoff E
[
�̄�
(
𝑋𝐺
1
,… , 𝑋𝐺

𝑛

)]
will stay the same. The rest of

my argument goes through verbatim.

C.7 Proof of Lemma 5

Let �⃗�∗ be the output of the greedy algorithm on product menu �⃗�. Consider a deci-
sionmaker who runs the greedy algorithm for 𝑖 − 1 iterations, choosing 𝑋∗

1
,… , 𝑋∗

𝑖
, but

chooses the remaining lotteries 𝑋𝑖+1,… , 𝑋𝑛 optimally. Formally, let

OPT𝑖 ∶= max
𝑋>𝑖∈𝑀>𝑖

E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖
, 𝑋𝑖+1,… , 𝑋𝑛, 0, 0,…

)]

Observe that
OPT0 = max

𝑋∈𝑀
E[�̄� (𝑋1,… , 𝑋𝑛, 0, 0,…)]

is simply expected utility maximization, whereas

OPT𝑛 = E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑛, 0, 0,…
)]

is the expected utility obtained by the greedy algorithm. The goal is to show that

2 ⋅ OPT𝑛 ≥ OPT0 (29)

Next, consider the added value from choosing 𝑋∗

𝑖
in iteration 𝑖 of the greedy algo-

rithm. This is the expected value of a random variable ∆𝑖 ∶ Ω→ ℝ, where

∆𝑖 ∶= �̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋∗

𝑖
, 0, 0,…

)
− �̄�

(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 0, 0, 0,…

)

Since this is the added value of the greedy algorithm in each iteration, we have

OPT𝑛 =

𝑛∑

𝑖=1

E[∆𝑖] (30)

I claim that the added value E[∆𝑖] exceeds the lost value from a simple deviation from
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the optimal solution to OPT𝑖−1, where one chooses 𝑋∗

𝑖
instead of the optimal 𝑋𝑖. I.e.,

E[∆𝑖] ≥ E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋𝑖, 0, 0,…

)
− �̄�

(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 0, 0, 0,…

)]

≥ E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋𝑖, 𝑋𝑖+1… , 𝑋𝑛, 0,…

)
− �̄�

(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 0, 𝑋𝑖+1,… , 𝑋𝑛, 0,…

)]

≥ E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋𝑖, 𝑋𝑖+1… , 𝑋𝑛, 0,…

)
− �̄�

(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋∗

𝑖
, 𝑋𝑖+1,… , 𝑋𝑛, 0,…

)]

(31)

This holds for any partial lotteries 𝑋𝑖+1,… , 𝑋𝑛. The first inequality follows from con-
struction of the greedy algorithm. The second inequality follows from the diminishing
returns, where the analog to 𝑥′′ in Definition 23 is

𝑥′′ =
(
0,… , 0, 0, 𝑋∗

𝑖+1
(𝑥),… , 𝑋∗

𝑛(𝑥), 0, 0…
)

The third inequality follows from the fact that �̄� is non-decreasing, since 𝑋∗

𝑖
≥ 0.

It follows from inequality (31) that

OPT𝑖−1 ≤ E[∆𝑖] + E
[
�̄�
(
𝑋∗
1
,… , 𝑋∗

𝑖−1
, 𝑋∗

𝑖
, 𝑋𝑖+1,… , 𝑋𝑛, 0, 0,…

)]

when 𝑋𝑖, 𝑋𝑖+1,… , 𝑋𝑛 are defined as the arguments that obtain OPT𝑖−1. By definition,
OPT𝑖 is an upper bound for the second term of the right-hand side. Therefore,

OPT𝑖−1 ≤ E[∆𝑖] + OPT𝑖

Apply this inequality recursively to show that

OPT0 ≤ OPT𝑛 +

𝑛∑

𝑖=1

E[∆𝑖] = 2 ⋅ OPT𝑛

where the second equality follows from equation (30). This implies inequality (29).
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C.8 Proof of Lemma 6

First, suppose that the utility function 𝑢 is (𝑖, 𝑗, 𝑛, 𝛿)-separable (Definition 10). I claim
that there cannot exist a violation of (𝑖, 𝑗, 𝑛, 4𝛿)-separability (Definition 23). Note that

(10) = 𝑢𝑖
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑥𝑗+1,…

)
+ 𝑢𝑗

(
… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)

+𝑢𝑖
(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1… , 𝑥𝑗−1, 𝑥𝑗+1,…

)
+ 𝑢𝑗

(
… , 𝑥𝑖−1, 𝑥𝑖+1… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)

+𝜉
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)
+ 𝜉𝑢

(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)

(11) = 𝑢𝑖
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑥𝑗+1,…

)
+𝑢𝑗

(
… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)

+𝑢𝑖
(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑥𝑗+1,…

)
+𝑢𝑗

(
… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)

+𝜉
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)
+ 𝜉

(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)

Recall that 𝜉(⋅) ≤ 𝛿. Therefore, the distance between expressions (10) and (11) cannot
be greater than 4𝛿, and there cannot be a violation of (𝑖, 𝑗, 𝑛, 4𝛿)-separability.

Next, I prove the converse. If the utility function 𝑢 does not have a violation of
(𝑖, 𝑗, 𝑛, 𝛿)-separability, then, for all (𝑥, 𝑎1, 𝑎2, 𝑏1, 𝑏2), the distance between expressions

𝑢
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)
+ 𝑢

(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)
(32)

𝑢
(
… , 𝑥𝑖−1, 𝑎1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑏2, 𝑥𝑗+1,…

)
+ 𝑢

(
… , 𝑥𝑖−1, 𝑏1, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑎2, 𝑥𝑗+1,…

)
(33)

is at most 𝛿. Set 𝑎1 = 𝑥𝑖, 𝑎2 = 𝑥𝑗, and 𝑏1 = 𝑏2 = 0. Then 𝑢(𝑥) equals

𝑢
(
… , 𝑥𝑗−1, 0, 𝑥𝑗+1,…

)
+𝑢 (… , 𝑥𝑖−1, 0, 𝑥𝑖+1,…)−𝑢

(
… , 𝑥𝑖−1, 0, 𝑥𝑖+1… , 𝑥𝑗−1, 0, 𝑥𝑗+1,…

)
+𝜉(𝑥)

where 𝜉(𝑥) = (32)− (33) for the aforementioned values of 𝑎1, 𝑎2, 𝑏1, 𝑏2. Since 𝜉(𝑥) ≤ 𝛿,
this satisfies the definition of (𝑖, 𝑗, 𝑛, 𝛿)-separability, and completes the proof.

C.9 Proof of Corollary 2

Suppose a weakly tractable choice correspondence maximizes expected utility, where
𝑑𝑛 = Had(𝐺𝑛(𝑢)) and 1∕𝛿𝑛 = 𝑂 (poly(𝑛)). Fix an integer 𝑛′ such that 𝑑𝑛′ = 𝑛. Then
Lemma 7 gives an𝑂(poly(𝑛′))-time algorithm to solveMax 2-SAT for boolean formulas
with 𝑛 variables. I claim this runtime is also polynomial in 𝑛. Since 𝑑𝑛 = Ω(poly(𝑛)),
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𝑑𝑛 ≥ 𝐶𝑛𝛼 for some constants 𝐶, 𝛼. It follows that 𝑛′ ≤ 𝐶−1𝑛1∕𝛼, so 𝑛′ = 𝑂(poly(𝑛)) and
𝑂(poly(𝑛′)) = 𝑂(poly(𝑛)).

C.10 Proof of Lemma 8

Let 𝐺 ∶= 𝐺𝑛(𝑢) be an undirected graph where Had(𝐺) = 𝑂(1). Let avg(𝐺) be the
average degree across all nodes in𝐺′ If 𝑑 = cdgn(𝐺), then there exists aminor𝐺′ where
every node in𝐺′ has degree that at least𝑑, and so avg(𝐺) ≥ 𝑑. It follows fromKostochka
(1984) that𝐺′ has a completeminor𝐺′′withΩ

(
avg(𝐺′)∕

√
log avg(𝐺′)

)
nodes. Since𝐺′

is a minor of 𝐺, 𝐺′′ is also a (complete) minor of 𝐺. Altogether, this implies Had(𝐺) =
Ω
(
𝑑∕
√
log𝑑

)
. Since Had(𝐺) = 𝑂(1), it follows that 𝑑 = 𝑂(1).

C.11 Proof of Lemma 9

Fix undirected graph 𝐺 where cdgn(𝐺) = 𝑑. Construct a directed graph �⃗� as follows.

1. Find a node 𝑖 in the original graph 𝐺 that has degree less than or equal to 𝑑. This
is always possible since 𝐺 is a minor of itself, and the contraction degeneracy re-
quires allminors of𝐺 to have a nodewith degree less than or equal to𝑑. Searching
over nodes 𝑖 and evaluating their degree takes 𝑂(𝑛2) time.

2. If node 𝑗 shares an edge with node 𝑖 in the undirected graph 𝐺, let �⃗� have a
directed edge from node 𝑖 to node 𝑗. By definition, this leaves node 𝑖 with no
more than 𝑑 outgoing edges. Searching over nodes 𝑗 takes 𝑂(𝑛) time.

3. Delete node 𝑖 from 𝐺. Return to step 1 if 𝐺 is not empty, at most 𝑂(𝑛) times.

This algorithm has runtime 𝑂(𝑛3). The only remaining property to verify is that �⃗� is
acyclic. This holds because step 1 visits each node 𝑖 exactly once, and step 2 only creates
an edge from node 𝑖 to a node 𝑗 that has not yet been visited. Any path in �⃗� must be
strictly increasing in the order in which step 1 visits nodes. This rules out cycles, which
must begin and end with the same node.

C.12 Proof of Lemma 10

First, construct a minor 𝐺′ of the graph 𝐺 as follows.

1. Starting with 𝐺, find an edge (𝑖, 𝑗)where 𝑖 ∈ 𝐹 is in the frontier and 𝑗 ∉ 𝐹 is not.
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2. Modify 𝐺 by contracting the edge (𝑖, 𝑗) into a new node 𝑖′.

3. Modify the frontier 𝐹 by removing 𝑖 and replacing it with 𝑖′.

4. Repeat step 1 with modified 𝐺 and frontier 𝐹, until no suitable edges remain.

5. Delete all remaining nodes 𝑖 ∉ 𝐹. None of these nodes are connected with the
frontier 𝐹, or there would have been another edge to contract in step 4.

Henceforth, let𝐺 be the original graph and𝐹 the original frontier. For every node 𝑖 ∈ 𝐹

there exists a contracted node 𝑖′ in the minor 𝐺′. By construction, the minor 𝐺′ has an
edge between nodes 𝑖′ and nodes 𝑗′ if and only if one of the following is true.

1. 𝐺 has an edge between nodes 𝑖 and 𝑗.

2. There is a path in 𝐺 from 𝑖 to 𝑗 that does not go through the frontier 𝐹.

Let 𝑑 = cdgn(𝐺). By the definition of contraction degeneracy, there exists a node 𝑘′ in
the minor 𝐺′ with at most 𝑑 edges. Let 𝑘 ∈ 𝐹 be the node in 𝐺 that 𝑘′ represents.

Suppose the algorithm were to visit node 𝑘 in step 5. First, consider the indirect
influencers 𝑖 ∈ 𝐼𝑘. By definition of 𝐼𝑘, there exists a path from 𝑖 to 𝑘 that does not
pass through any unvisited nodes. Since the frontier 𝐹 consists of unvisited nodes, this
implies that the path from 𝑖 to 𝑘 does not pass through 𝐹. Next, consider the nodes 𝑘′

and 𝑖′ in 𝐺′, representing nodes 𝑘 and 𝑖 ∈ 𝐼𝑘 in 𝐺. There is an edge between 𝑘′ and 𝑖′ in
𝐺′ since, as I just argued, there is a path in 𝐺 from 𝑖 to 𝑗 that does not go through the
frontier 𝐹. This path will be contracted in the procedure used to define 𝐺′, until only
an edge between 𝑘′ and 𝑖′ remains. However, I defined 𝑘′ as a node that has at most 𝑑
edges in 𝐺′. Since there are at most 𝑑 nodes 𝑖′ in 𝐺′ that share an edge with 𝑘′, there
can be at most 𝑑 nodes 𝑖 ∈ 𝐼𝑘. This completes the proof, since I have identified a node
𝑘 in 𝐺 where |𝐼𝑘| ≤ 𝑑.

C.13 Proof of Lemma 11

The definition of the successors is left arbitrary in Algorithm 1, and the definition of
predecessors is identical in Algorithms 1 and 3. So, I only need to verify that the defi-
nition of indirect influencers in Algorithm 3 is consistent with Algorithm 1.

Let 𝐼𝑖 be the indirect influencers of Algorithm 1. It is the subset of unvisited coor-
dinates 𝑗 where there is a predecessor 𝑘 ∈ 𝑃𝑖 whose choice 𝑋∗

𝑘
(⋅) depends on 𝑋𝑗. Let 𝐼′𝑖
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be the indirect influencers of Algorithm 3. It consists of the frontier nodes 𝑗 ∈ 𝐹 where
where 𝐺 contains a path between 𝑖 and 𝑗 that does not pass through 𝐹.

It is sufficient to show that 𝐼𝑖 ⊆ 𝐼′
𝑖
.29 Consider any node 𝑗 ∈ 𝐼𝑖. By definition, there

is a predecessor 𝑘 ∈ 𝑃𝑖 whose choice 𝑋∗

𝑘
(⋅) depends on 𝑋𝑗.

First, I claim that 𝑗 ∈ 𝐹. This follows from the fact that the choice𝑋∗

𝑘
(⋅) can only de-

pend on partial lotteries associated with frontier nodes. Recall that step 6 of algorithm
3 calls step 6 of Algorithm 1. This ensures, at each iteration, that choice 𝑋∗

𝑘
(⋅) remains

a function of partial lotteries associated unvisited nodes that are either (i) successors or
(ii) indirect influencers of some visited node. Successors of visited nodes are added to
the frontier 𝐹 in step 7, and only removed after they are visited. Indirect influencers are
in the frontier by definition, and only removed after they are visited. Therefore, at each
iteration, 𝑋∗

𝑘
(⋅) remains a function of partial lotteries associated with frontier nodes.

Second, I claim that there exists a path in 𝐺 between 𝑖 and 𝑗 that does not pass
through unvisited nodes (aside from the terminal nodes 𝑖 and 𝑗). By definition, 𝑘 is a
visited node where 𝑋∗

𝑘
(⋅) depends on both 𝑋𝑖 and 𝑋𝑗. Therefore, it suffices to show that

there are paths in 𝐺 between 𝑖 and 𝑘, as well as 𝑘 and 𝑗. Without loss, focus on 𝑖 and 𝑘.
I claim there exists a path between 𝑖 and 𝑘 that does not pass unvisited nodes. Ob-

serve that, in order for 𝑋∗

𝑘
(⋅) to depend on 𝑋𝑖, it must have been defined (or redefined)

in step 6 of a previous iteration of Algorithm 3. Let ℎ be the node visited during that
previous iteration. There are two cases.

1. If ℎ = 𝑘, then 𝑋∗

𝑘
is being defined for the first time. In order for 𝑋∗

𝑘
(⋅) to depend

on 𝑋𝑖, it must be the case that 𝑖 ∈ 𝑆𝑘 ∪ 𝐼
′

𝑘
.

Suppose 𝑖 ∈ 𝑆𝑘. Then, by definition of 𝑆𝑘, 𝑖 and 𝑘 share an edge in 𝐺. This means
there is a path in 𝐺 between 𝑖 and 𝑘 that does not pass through any nodes other
than 𝑖 and 𝑘, let alone unvisited nodes. The claim holds vacuously.

Alternatively, suppose 𝑖 ∈ 𝐼′
𝑘
. By definition of 𝐼′

𝑘
, there is a path from 𝑖 to 𝑘

that does not pass through nodes that were unvisited as of the previous iteration.
These nodes, which make up the interior of the path from 𝑖 to 𝑘, were visited as
of the previous iteration and therefore remain visited as of the current iteration
(i.e., the one that visits 𝑖). So, this path also does not pass through any nodes that
are unvisited as of the current iteration.

29The fact that 𝐼′
𝑖
may contain nodes not in 𝐼𝑖 is immaterial. Algorithm 3 only uses 𝐼′

𝑖
as an argument

for choices 𝑋∗
𝑃𝑖
(⋅) of 𝑖’s predecessors. Any node in 𝐼′

𝑖
⧵ 𝐼𝑖 does not actually affect function 𝑋∗

𝑃𝑖
(⋅).
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2. Suppose ℎ ≠ 𝑘. Before 𝑋∗

𝑘
(⋅) depended on 𝑋𝑖, it depended on 𝑋ℎ. Then 𝑋ℎ was

replaced with 𝑋∗

ℎ
, which depended on 𝑋𝑖. By definition of 𝑋∗

ℎ
, this implies 𝑖 ∈

𝑆ℎ ∪ 𝐼ℎ. Following the same argument as in Case 1, this implies that there is a
path from 𝑖 to ℎ that does not pass through any nodes that are unvisited as of the
current iteration (i.e., the one that visits 𝑖).

If I can find a path from ℎ to 𝑘 that does not pass through any unvisited nodes as
of the previous iteration (i.e., the one that visits ℎ), that same path will not pass
through any unvisited nodes as of the current iteration. Combining this path
with the one from 𝑖 to ℎ would prove the claim. To find this path from ℎ to 𝑘,
I repeat this two-case argument with node ℎ taking the role of node 𝑖. This is
possible since 𝑘 ∈ 𝐼ℎ. Furthermore, there are only 𝑛 < ∞ nodes, so eventually
the argument will land in Case 1 and halt.

I have shown that 𝑗 ∈ 𝐹 and there exists a path in 𝐺 between 𝑖 and 𝑗 that does not pass
through unvisited nodes. Therefore, 𝑗 ∈ 𝐼′

𝑖
. This completes the proof.

C.14 Proof of Lemma 12

Consider step 5 of Algorithm 3. In the iteration where node 𝑖 is visited, recall that

𝑋∗

𝑖

(
𝑋𝑆𝑖

, 𝑋𝐼𝑖

)
∈ argmax

𝑋𝑖∈𝑀𝑖

E
[
𝑢
(
𝑋𝑖, 𝑋𝑆𝑖

, 𝑋∗
𝑃𝑖

(
𝑋𝑖, 𝑋𝐼𝑖

)
, 0, 0,…

)]

To prove this result, it is enough to show that 𝑋∗

𝑖
(⋅) is consistent with expected utility

maximization in the following sense. If the decisionmaker is constrained to lotteries
𝑋′ ∈ 𝑀 where 𝑋′

𝑆𝑖
= 𝑋𝑆𝑖

and 𝑋′
𝐼𝑖
= 𝑋𝐼𝑖

, her optimal choice 𝑋′ should satisfy 𝑋′

𝑖
=

𝑋∗

𝑖
(𝑋𝑆𝑖

, 𝑋𝐼𝑖
). If that holds, the optimality of Algorithm 1 follows from the optimality of

dynamic programming.
I begin by establishing a useful property. Suppose that the (undirected) insepara-

bility graph 𝐺 ∶= 𝐺𝑛(𝑢) has an edge between nodes 𝑖 and 𝑗. I claim that 𝑗 ∈ 𝑆𝑖 ∪ 𝑃𝑖. To
prove this claim, there are three cases to consider.

1. The algorithm has not yet visited node 𝑗. By definition, 𝑗 ∈ 𝑆𝑖 is a successor of 𝑖.

2. The algorithm has already visited node 𝑗 and there is an edge in �⃗� from 𝑗 to 𝑖.
Then 𝑖 ∈ 𝑆𝑗 is a successor of 𝑗, by definition. Since 𝑋∗

𝑗
(⋅) depends on 𝑋𝑆𝑗

, it
depends on 𝑋𝑖. Therefore, 𝑗 ∈ 𝑃𝑖 is a predecessor of 𝑖.
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3. The algorithm has already visited node 𝑗 and there is an edge in �⃗� from 𝑖 to 𝑗.
This case is somewhat more involved.

First, note that 𝑖 ≤ 𝑗. This follows from the fact that there is an edge from 𝑖 to 𝑗
implies that 𝑖 precedes 𝑗 in the topological order of step 2.

Next, consider the iteration of step 5 that visits node 𝑗. Step 4 visits 𝑖 before 𝑗,
but 𝑖 has not been visited yet, so it must be the case that step 5d skipped over 𝑖.
This only occurs when there are too many indirect influencers of 𝑖 as of the first
iteration that attempts to visit 𝑖; if 𝐼′

𝑖
is the set of indirect influencers as of that

iteration, this means |𝐼′
𝑖
| > 𝑑.

I claim that 𝑖 ∈ 𝐹𝑗, where 𝐹𝑗 is the frontier as of the iteration that visits 𝑗. To see
this, let node 𝑘 ∈ 𝐼′

𝑖
be an indirect influencer of node 𝑖, as of the first iteration that

attempts to visit 𝑖. Such a node must exist, since |𝐼′
𝑖
| > 𝑑. By definition, there is a

path in 𝐺 from 𝑘 to 𝑖 that does not pass any nodes that are unvisited as of the first
iteration that attempts to visit 𝑖. Let node 𝑙 be the second-to-last node in that path,
which is adjacent to 𝑖. At the iteration that visits node 𝑙, 𝑖 has not yet been visited.
Since 𝑖 was unvisited and there is an edge (𝑖, 𝑙) in 𝐺, it must be that 𝑖 ∈ 𝑆𝑙. At the
end of the iteration that visits 𝑙, the successor 𝑖 is added to the frontier 𝐹. Going
forward, as of the iteration that visits 𝑗, 𝑖 has not yet been visited and therefore
not removed from the frontier. It follows that 𝑖 ∈ 𝐹𝑗.

Furthermore, I claim that 𝑖 ∈ 𝐼𝑗. Since 𝑖 ∈ 𝐹𝑗, node 𝑖 is an indirect influencer of
𝑗 provided that there is a path in 𝐺 between 𝑖 and 𝑗 that does not pass through
nodes that are unvisited as of the iteration that visits 𝑗. This path simply consists
of two nodes 𝑖 and 𝑗, which share an edge in 𝐺.

By definition, 𝑋∗

𝑗
(⋅) depends on 𝑋𝐼𝑗

. By the previous paragraph, 𝑖 ∈ 𝐼𝑗 and there-
fore 𝑋∗

𝑗
(⋅) depends on 𝑋𝑖. Therefore, 𝑗 ∈ 𝑃𝑖 is a predecessor of 𝑖.

It follows from these three cases that 𝑗 ∈ 𝑆𝑖 ∪ 𝑃𝑖.
By the preceding argument, any node 𝑗 ∉ 𝑆𝑖 ∪ 𝑃𝑖 must not share an edge with 𝑖 in

the inseparability graph 𝐺. By definition of the inseparability graph, this means that 𝑢
is (𝑖, 𝑗, 𝑛)-separable. Applying the definition of separability for each 𝑗 ∉ 𝑆𝑖 ∪ 𝑃𝑖, I find
that 𝑢(𝑥) = 𝑢𝑖

(
𝑥𝑖, 𝑥𝑃𝑖 , 𝑥𝑆𝑖

)
+ 𝑢−𝑖 (𝑥−𝑖). When maximizing expected utility with respect

to𝑋𝑖, the function 𝑢−𝑖 is irrelevant if 𝑥𝑃𝑖 , 𝑥𝑆𝑖 are held fixed. It follows that setting𝑋𝑗 = 0

for 𝑗 ∉ 𝑆𝑖 ∪ 𝑃𝑖 is without loss of optimality.
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C.15 Proof of Lemma 13

To establish the runtime, I analyze each step of the algorithm. Combining all these
steps yields a runtime that satisfies the bound (13). Step 1 can be done in 𝑂(poly(𝑛))
time, by Lemma 9. Step 2 can be done in 𝑂(𝑛2) time via topological sorting. Step 3 can
be done in 𝑂(1) time. Step 4 can be done in 𝑂(𝑛) time. Step 5 has four subparts.

1. Step 5a can be done in 𝑂(𝑛2) time by searching through all edges.

2. Step 5b can be done in 𝑂(𝑛2) time by searching through all edges.

3. Step 5c can be done in 𝑂(𝑛3) time. This involves checking up to 𝑛 nodes 𝑗 ∈ 𝐹.
Construct a graph 𝐺′ from 𝐺 by deleting all unvisited nodes other than 𝑖 and 𝑗.
This can be done in 𝑂(𝑛2) time. For each 𝑗, I evaluate whether there is a path in
𝐺′ between 𝑖 and 𝑗. This can be done in 𝑂(𝑛2) time by breadth-first search.

4. Step 5d can be done in 𝑂(𝑛) time by searching through the set 𝐼𝑖 of indirect influ-
encers. This repeats step 5 at most 𝑛 times before either (i) moving on to step 6
or (ii) reaching an error. Lemma 10 precludes (ii).

Step 6 has two subparts.

1. First, it runs step 5 of Algorithm 1. This step involves an optimization problem.
Since 𝑢 is efficiently computable and the sample space is split into 𝑚 intervals,
evaluating expected utility for a given lottery takes 𝑂(𝑚 ⋅ poly(𝑛)) time. For each
𝑋𝑆𝑖∪𝐼𝑖

∈ 𝑀𝑆𝑖∪𝐼𝑖
, I consider up to 𝑘 alternative partial lotteries𝑋𝑖 ∈ 𝑀𝑖. I claim that

𝑀𝑆𝑖∪𝐼𝑖
has up to 𝑘2𝑑 elements, so step 5 takes 𝑂(𝑘2𝑑+1𝑚 ⋅ poly(𝑛)) time.

To show that𝑀𝑆𝑖∪𝐼𝑖
has no more than 𝑘2𝑑 elements, it suffices to show that |𝑆𝑖 ∪

𝐼𝑖| ≤ 2𝑑. Step 5d ensures that 𝐼𝑖 ≤ 𝑑. The successors 𝑆𝑖 can be split into two parts.
The first part consists of unvisited nodes 𝑗 where �⃗� contains an edge from 𝑖 to 𝑗.
There are at most 𝑑 nodes of this kind, by step 1. The second part of 𝑆𝑖 consists of
unvisited nodes 𝑗 where �⃗� contains an edge from 𝑗 to 𝑖. Let 𝑖′ ∶= 𝑗 and 𝑗′ ∶= 𝑖.
Restated, node 𝑗′ is visited before node 𝑖′ and �⃗� contains an edge from 𝑖′ to 𝑗′. In
bullet 3 of the proof of Lemma 12, I showed that this implies 𝑖′ ∈ 𝐼𝑗′ . Restated
in my original notation, 𝑗 ∈ 𝐼𝑖. Therefore, these nodes 𝑗 were already counted
among the 𝑑 nodes in 𝐼𝑖. So, there are at most 2𝑑 nodes in 𝑆𝑖 ∪ 𝐼𝑖.
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2. Second, it runs step 6 of Algorithm 1. This iterates over𝑂(𝑛) predecessors 𝑗 ∈ 𝑃𝑖.
For each 𝑗, it needs to redefine 𝑋∗

𝑗
for up to 𝑘2𝑑 elements of 𝑀𝑆𝑖∪𝐼𝑖

. Each redef-
inition can be done in 𝑂(𝑘𝑑+1) time by looking up the values of 𝑋∗

𝑗
for different

arguments 𝑋𝑖, 𝑋𝐼𝑖
. Overall, this takes 𝑂(𝑛𝑘3𝑑+1) time.

Step 7 can be done in 𝑂(𝑛) time. It returns to step 4 at most 𝑛 times.

C.16 Proof of Proposition 3

Lemma 11 says that Algorithm 3 is a special case of Algorithm 1. Lemma 12 says that
Algorithm 3maximizes expected utility. Let 𝑑𝑛 = cdgn(𝐺𝑛(𝑢, 0)). I showed in the proof
of Lemma 13 (bullet 6a) that, for each node 𝑖 in 𝐺𝑛(𝑢, 0), 𝑆𝑖 ∪ 𝐼𝑖 has no more than 2𝑑𝑛
elements. I showed in Lemma 8 that 𝑑𝑛 = 𝑂(1) if 𝑢 is strongly Hadwiger separable. So,
Algorithm 3 is dynamic choice bracketing with bracket size 2𝑑𝑛 = 𝑂(1).
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